anolisos8.8安装显卡+CUDA工具+容器运行时支持(containerd/docker)+k8s部署GPU插件

anolisos8.8安装显卡及cuda工具

一、目录

1、测试环境
2、安装显卡驱动
3、安装cuda工具
4、配置容器运行时
5、K8S集群安装nvidia插件

二、测试环境

操作系统:Anolis OS 8.8
内核版本:5.10.134-13.an8.x86_64
显卡安装版本:525.147.05
cuda版本:V10.2.89
外网要求:必须

三、安装显卡驱动

3.1、禁用nonveau

[root@localhost ~]# wget https://ops-publicread-1257137142.cos.ap-beijing.myqcloud.com/shell/disable_nouveau.sh
[root@localhost ~]# bash disable_nouveau.sh
[root@localhost ~]# lsmod | grep nouveau
#重启服务器再次进行检测
[root@localhost ~]# reboot
[root@localhost ~]# lsmod | grep nouveau

3.2、下载显卡驱动并安装

显卡下载地址:https://www.nvidia.com/Download/Find.aspx?lang=en-us#
注:根据显卡型号选择对应驱动进行下载!

[root@localhost src]# lspci |grep NVIDIA
13:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
[root@localhost src]# wget https://us.download.nvidia.cn/tesla/525.147.05/NVIDIA-Linux-x86_64-525.147.05.run
[root@localhost src]# bash NVIDIA-Linux-x86_64-525.147.05.run
#根据提示进行安装

如下则安装完成!
在这里插入图片描述

检测

[root@localhost src]# nvidia-smi
Tue Dec 12 10:16:35 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.147.05   Driver Version: 525.147.05   CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:13:00.0 Off |                    0 |
| N/A   63C    P0    30W /  70W |      2MiB / 15360MiB |      5%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

四、安装CUDA工具

4.1、官网下载指定版本CUDA

https://developer.nvidia.com/cuda-toolkit-archive

4.2、安装CUDA

[root@localhost src]# wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
[root@localhost src]# sh cuda_10.2.89_440.33.01_linux.run
#加载程序耗时3分钟
—————————————————————————————————————————————————————————————————————————————————
x  End User License Agreement                                                  x
x  -                                                                           x
x                                                                              x
x                                                                              x
x  Preface                                                                     x
x  -                                                                           x
x                                                                              x
x  The Software License Agreement in Chapter 1 and the Supplement              x
x  in Chapter 2 contain license terms and conditions that govern               x
x  the use of NVIDIA software. By accepting this agreement, you                x
x  agree to comply with all the terms and conditions applicable                x
x  to the product(s) included herein.                                          x
x                                                                              x
x                                                                              x
x  NVIDIA Driver                                                               x
x                                                                              x
x                                                                              x
x  Description                                                                 x
x                                                                              x
x  This package contains the operating system driver and                       x
xq                                                                             x
x Do you accept the above EULA? (accept/decline/quit):                         x
x accept                                                                       x
—————————————————————————————————————————————————————————————————————————————————
#输入accept回车
—————————————————————————————————————————————————————————————————————————————————
x CUDA Installer se Agreement                                                  x
x - [ ] Driver                                                                 x
x      [ ] 440.33.01                                                           x
x + [X] CUDA Toolkit 10.2                                                      x
x   [X] CUDA Samples 10.2                                                      x
x   [X] CUDA Demo Suite 10.2                                                   x
x   [X] CUDA Documentation 10.2                                                x
x   Options                                                                    x
x   Install                                                                    x
x                                                                              x
x                                                                              x
x                                                                              x
x                                                                              x
x                                                                              x
x   VIDIA Driver                                                               x
x                                                                              x
x                                                                              x
x   escription                                                                 x
x                                                                              x
x                                                                              x
x                                                                              
x                                                                              x
x Up/Down: Move | Left/Right: Expand | 'Enter': Select | 'A': Advanced options x
—————————————————————————————————————————————————————————————————————————————————
#去掉显卡驱动选择install继续

4.3、设置cuda环境变量

[root@localhost ~]# echo "export PATH=/usr/local/cuda/bin:$PATH" >> /etc/profile
[root@localhost ~]# echo "export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH" >> /etc/profile
[root@localhost ~]# source /etc/profile
[root@localhost ~]# nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:24:38_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89

五、配置容器运行时

5.1、安装显卡容器运行时

#添加阿里docker-ce源
# step 1: 安装必要的一些系统工具
[root@localhost ~]# yum install -y yum-utils device-mapper-persistent-data lvm2
# Step 2: 添加软件源信息
[root@localhost ~]# yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
# Step 3
[root@localhost ~]# sed -i 's+download.docker.com+mirrors.aliyun.com/docker-ce+' /etc/yum.repos.d/docker-ce.repo
# Step 4: 更新并安装Docker-CE
[root@localhost ~]# yum makecache
# Step 5: 安装显卡容器运行时
[root@localhost ~]# yum -y install nvidia-docker2

5.2、配置containerd支持显卡

# Step1 : 安装containerd
[root@localhost ~]# yum -y install containerd.io
# Step2 :生成默认配置
[root@localhost ~]#  containerd config default > /etc/containerd/config.toml
# Step3 :修改containerd配置 /etc/containerd/config.toml
###############################################################
...[plugins."io.containerd.grpc.v1.cri".containerd]snapshotter = "overlayfs"default_runtime_name = "runc"no_pivot = false
...[plugins."io.containerd.grpc.v1.cri".containerd.runtimes][plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]runtime_type = "io.containerd.runtime.v1.linux" # 将此处 runtime_type 的值改成 io.containerd.runtime.v1.linux
...[plugins."io.containerd.runtime.v1.linux"]shim = "containerd-shim"runtime = "nvidia-container-runtime" # 将此处 runtime 的值改成 nvidia-container-runtime
...
###########################################################
# Step4 : 启动containerd
[root@localhost ~]# systemctl start containerd && systemctl enable containerd
# Step5 : 跑测试容器测试
[root@localhost ~]# ctr image pull docker.io/nvidia/cuda:11.2.2-base-ubuntu20.04
[root@localhost ~]# ctr run --rm -t \
>     --runc-binary=/usr/bin/nvidia-container-runtime \
>     --env NVIDIA_VISIBLE_DEVICES=all \
>     docker.io/nvidia/cuda:11.2.2-base-ubuntu20.04 \
>     cuda-11.6.2-base-ubuntu20.04 nvidia-smi
Tue Dec 12 03:01:10 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.147.05   Driver Version: 525.147.05   CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:13:00.0 Off |                    0 |
| N/A   66C    P0    30W /  70W |      2MiB / 15360MiB |      4%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

5.3、配置Docker支持显卡

# Step1 : 安装docker
[root@localhost ~]# yum install docker-ce-23.0.6 -y
# Step2 : 配置docker容器运行时,并启动docker
#修改cgroup驱动为systemd[k8s官方推荐]、限制容器日志量、修改存储类型
[root@localhost ~]# mkdir /etc/docker -p
[root@localhost ~]# cat > /etc/docker/daemon.json <<EOF
{"registry-mirrors": ["https://tf72mndn.mirror.aliyuncs.com"],"exec-opts": ["native.cgroupdriver=systemd"],"log-opts": {"max-file": "3","max-size": "500m"},"runtimes": {"nvidia": {"path": "/usr/bin/nvidia-container-runtime","runtimeArgs": []}}
}
EOF
[root@localhost ~]# systemctl daemon-reload
[root@localhost ~]# systemctl restart docker
[root@localhost ~]# systemctl enable docker
# Step3 : 启动docker测试容器
[root@localhost ~]# docker run --runtime=nvidia --rm nvidia/cuda:11.0-base nvidia-smi
Unable to find image 'nvidia/cuda:11.0-base' locally
11.0-base: Pulling from nvidia/cuda
54ee1f796a1e: Pull complete 
f7bfea53ad12: Pull complete 
46d371e02073: Pull complete 
b66c17bbf772: Pull complete 
3642f1a6dfb3: Pull complete 
e5ce55b8b4b9: Pull complete 
155bc0332b0a: Pull complete 
Digest: sha256:774ca3d612de15213102c2dbbba55df44dc5cf9870ca2be6c6e9c627fa63d67a
Status: Downloaded newer image for nvidia/cuda:11.0-base
Tue Dec 12 03:10:32 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.147.05   Driver Version: 525.147.05   CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:13:00.0 Off |                    0 |
| N/A   64C    P0    30W /  70W |      2MiB / 15360MiB |      5%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

六、K8S集群安装nvidia插件

#  Step1 : GPU主机打标签 
[root@localhost ~]# kubectl label node node9 nvidia.com=gpu
#  Step2 : K8S集群安装GPU驱动插件(仅需要安装一次!)
[root@localhost ~]# kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-beta4/nvidia-device-plugin.yml
#  Step3 : 带GPU资源主机GPU资源信息
[root@localhost ~]# kubectl describe node node9 |grep gpugpu/type=nvidianvidia.com/gpu:     1nvidia.com/gpu:     1nvidia.com/gpu     0           0
#  Step4 : 部署使用GPU资源测试容器apiVersion: v1
kind: Pod
metadata:name: cuda-vector-add
spec:restartPolicy: OnFailurecontainers:- name: cuda-vector-add#image: "k8s.gcr.io/cuda-vector-add:v0.1"image: "docker.io/nvidia/cuda:11.0.3-base-ubuntu20.04"command:- nvidia-smiresources:limits:nvidia.com/gpu: 1

其他:disable_nouveau.sh 脚本内容

#!/bin/bash
echo -e "\033[32m>>>>>>>>更新系统内核,请耐心等待!\033[0m"
yum -y install gcc make elfutils-libelf-devel libglvnd-devel kernel-devel epel-release 
yum -y install dkms
rm -f /etc/modprobe.d/blacklist-nvidia-nouveau.conf /etc/modprobe.d/nvidia-unsupported-gpu.conf
echo blacklist nouveau | tee /etc/modprobe.d/blacklist-nvidia-nouveau.conf && \
echo options nouveau modeset=0 | tee -a /etc/modprobe.d/blacklist-nvidia-nouveau.conf && \
echo options nvidia NVreg_OpenRmEnableUnsupportedGpus=1 | tee /etc/modprobe.d/nvidia-unsupported-gpu.conf 
mv /boot/initramfs-$(uname -r).img  /boot/initramfs-$(uname -r)-nouveau.img
dracut /boot/initramfs-$(uname -r).img $(uname -r)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267731.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

el-tree搜索的使用

2023.12.11今天我学习了如何对el-tree进行搜索的功能&#xff0c;效果如下&#xff1a; <template><div class"head-container"><el-inputv-model"roleName"clearableplaceholder"请输入角色/用户名称"prefix-icon"el-icon-…

linux搭建seata并使用

搭建seata 官网 在linux下搭建 下载1.6.1版本&#xff1a;地址 新建文件夹、上传压缩包并解压 [roothao ~]# cd /usr/local/software/ [roothao /usr/local/software]# ls canal docker elk gitlab jdk mysql nacos nexus nginx rabbitmq redis redis_sentinel…

[IDEA] 写代码时没有类型推断的解决方法

本示例使用scala, 其他语言同理 使用 .var 时会自动生成变量 使用快捷键 CtrlAtlv 一样 val abc "abc"但是这个变量没有显式表现类型 期望 val abc: String "abc" 解决方法

[Unity]关于Unity接入Appsflyer并且打点支付

首先需要去官方下载Appsflyer的UnityPackage 链接在这afPackage 然后导入 导入完成 引入此段代码 using AppsFlyerSDK; using System.Collections; using System.Collections.Generic; using UnityEngine;public class AppflysManager : MonoBehaviour {public static App…

高效利用内存资源之动态内存管理详解

目录 一、为什么存在动态内存分配 二、动态内存函数的介绍 2.1malloc 2.2free 2.3calloc 2.4realloc 三、常见的动态内存错误 3.1对NULL指针的解引用操作 3.2对动态开辟空间的越界访问 3.3对非动态开辟内存使用free释放 3.4使用free释放一块动态开辟内存的一部分 3.…

UE4/UE5 修改/还原场景所有Actor的材质

使用蓝图方法&#xff1a; 1.修改场景所有Actor 材质&#xff1a; Wirframe&#xff1a;一个材质类 MatList&#xff1a;获取到的所有模型的全部材质 的列表 TempAllClass&#xff1a;场景中所有获取的 Actor 的列表 功能方法如下&#xff1a; 蓝图代码可复制在&#xff1a…

adb命令学习记录

1、 adb ( android debug bridge)安卓调试桥&#xff0c;用于完成电脑和手机之间的通信控制。 xcode来完成对于ios设备的操控&#xff0c;前提是有个mac电脑。 安卓系统是基于linux内核来进行开发的。 2、adb的安装: 本身 adb是 android SDK 其中自带的工具&#xff0c;用于完…

web Speech Synthesis 文字语音播报,Audio 播放base64提示音

SpeechSynthesisUtterance基本介绍 SpeechSynthesisUtterance是HTML5中新增的API,用于将指定文字合成为对应的语音.也包含一些配置项,指定如何去阅读(语言,音量,音调)等 SpeechSynthesisUtterance基本属性 SpeechSynthesisUtterance.lang 获取并设置话语的语言SpeechSynthesisU…

打包CSS

接上一个打包HTML继续进行CSS的打包 1.在之前的文件夹里的src文件夹创建一个css文件 2.在浏览器打开webpack——>中文文档——>指南——>管理资源——>加载CSS 3.复制第一句代码到终端 4.复制下图代码到webpack.config.js脚本的plugins&#xff1a;[.....]内容下…

内存cache大量使用问题导致应用异常问题

概述 28s应用崩溃查看内存使用有大量cache。 分析 查看free 信息平时的确存在大量cache使用的情况查看dmes信息发现filesendserver崩溃 崩溃信息为系统调用 查看到page allocation failure:order 5 同时也看到系统内存使用情况 查看到系统实际还有部分内存为空闲内存&am…

【原创分享】Altium Designer 23全新PCB模块复用方法教程

"Reuse Blocks"功能即“复用块”功能是Altium Designer 23设计环境中的一项强大工具&#xff0c;它允许用户将先前创建的设计模块存储在一个可访问的库中&#xff0c;并在需要时将其插入到新的设计中。通过"Reuse Blocks"&#xff0c;设计师可以节省大量时…

Scratch题库:6547网助力编程学习之路

随着科技的不断发展&#xff0c;编程已经成为了当今社会的一项重要技能。越来越多的家长和学校开始重视孩子们的编程教育&#xff0c;而Scratch作为一款适合儿童学习的编程语言&#xff0c;受到了广泛的关注。然而&#xff0c;面对琳琅满目的Scratch教程和题库&#xff0c;如何…