多线程 - 学习笔记

前置知识

什么是线程和进程?

进程: 是程序的一次执行,一个在内存中运行的应用程序。每个进程都有自己独立的一块内存空间,一个进程可以有多个线程,比如在Windows系统中,一个运行的xx.exe就是一个进程。
线程: 进程中的一个执行流(控制单元 / 执行任务),负责当前进程中程序的执行。一个进程至少有一个线程,一个进程可以运行多个线程,多个线程可共享数据。

线程的优点

  1. 轻量, 创建一个线程的代价要比进程小的多
  2. 线程之间的切换, 对比进程, OS 要做的工作小很多
  3. 线程运行, 占用资源比进程少很多
  4. 能充分利用多处理器的可并行数量
  5. 在等待慢速 I/O 操作同时, 可执行其他任务
  6. 计算密集型应用, 可将计算分解到多个线程中实现, 以便在多处理器系统上运行
  7. I/O 密集型应用, 可将 I/O 操作重叠, 一个线程等待多个不同的 I/O 操作, 以提高性能.

二者的区别和联系

  • 进程是包含线程的. 每个进程至少有一个线程存在,即主线程。
  • 进程和进程之间不共享内存空间. 同一个进程的线程之间共享同一个内存空间.
  • 进程是系统分配资源的最小单位,线程是系统调度的最小单位。
  • 进程有自己的内存地址空间, 线程只独享指令流执行的必要资源, 如寄存器和栈
  • 线程的创建, 切换, 终止效率更高 .

更轻量的追求

人们不满足于线程的轻量, 因此又有了 “线程池” (ThreadPool) 和 “协程” (Coroutine) .

ThreadPool : 是一种利用池化技术思想来实现线程管理的技术, 主要是为了复用线程.
简单理解就是, 创建了一个容器, 容器里面放的是一定量的线程, 每次使用线程的时候, 不用创建, 直接从容器中取一个线程用, 用完之后不用销毁, 再放到回容器里去,以备下次使用

协程运行在线程之上, 属于是在线程基础之上通过分时复用的方式运行多个协程.
即一个线程包括多个协程, 协程可以当更小的线程取用, 并且协程的状态切换比线程更轻量 .

Java 线程和 OS 线程的关系

线程是 OS 的概念, OS 内核实现了线程这样的机制, 并且对用户层提供了一些 API 以供使用.
Java 标准库中的 Thread 类可以视为是对 OS 提供的 API , 进行了进一步的抽象和封装, 以便使用 .

运行 DEMO

运行代码

import java.util.Random;public class test1 {private static class MyThread extends Thread{@Overridepublic void run() {Random random = new Random();while(true) {// 打印线程名称System.out.println(Thread.currentThread().getName());try {// 随机停止 0-9 秒Thread.sleep(random.nextInt(10));} catch (InterruptedException e) {e.printStackTrace();}}}}public static void main(String[] args) {MyThread t1 = new MyThread();MyThread t2 = new MyThread();MyThread t3 = new MyThread();t1.start();t2.start();t3.start();Random random = new Random();while(true) {// 打印线程名称System.out.println(Thread.currentThread().getName());try {// 随机停止 0-9 秒Thread.sleep(random.nextInt(10));} catch (InterruptedException e) {e.printStackTrace();}}}
}

运行结果

main
Thread-0
Thread-2
Thread-1
Thread-1
Thread-0
main
Thread-2
Thread-2
Thread-1
Thread-1
main
Thread-0
Thread-0
Thread-0
Thread-1
main
Thread-1
Thread-2
Thread-0
...

从运行结果可以看出, 主线程与子线程之间的运行顺序完全随机 .

线程创建

继承 Thread 类

  1. 线程类继承 Thread
private static class MyThread extends Thread{@Overridepublic void run() {System.out.println("线程运行 逻辑");}
}
  1. 创建线程类的实例
MyThread t = new MyThread();  //此时只是声明了我要创建子线程, 并没有真正的去分配资源啥的

3.调用 start 方法, 才真的在操作系统的底层创建出一个线程

t.start(); //真正给线程分配资源

实现 Runnable 接口

  1. 实现 Runnable 接口
class MyRunnable implements Runnable {@Overridepublic void run() {System.out.println("线程运行 逻辑");}
}
  1. 创建 Thread 类实例, 调用 Thread 时构造方法将 Runnable 对象作为 target 参数 .
Thread t = new Thread(new MyRunnable());
  1. 调用 start 方法, 才真的在操作系统的底层创建出一个线程
t.start();

对比上述两种方式, 若要表示本子线程

  • 继承 Thread 类, 直接使用 this 则表示当前线程对象的引用
  • 实现 Runnable 接口, this 表示的时 MyRunnable 的引用, 若想表示本子进程, 需要使用 Thread.currentThread()

匿名内部类创建 Thread 子类对象

Thread t1 = new Thread() {@Overridepublic void run() {super.run();}
};

匿名内部类创建 Runnable 子类对象

Thread t2 = new Thread(new Runnable() {@Overridepublic void run() {System.out.println("内部代码逻辑");}
});

lambda 表达式创建 Runnable 子类对象

Thread t3 = new Thread(() -> System.out.println("内部代码逻辑"));
Thread t4 = new Thread(() -> {System.out.println("内部代码逻辑");
});

Thread 类常用方法

构造方法

在这里插入图片描述

Thread 常见的属性

在这里插入图片描述

  • ID 是线程的唯一标识, 不会重复
  • 优先级高的线程, 理论上 更容易被调用到
  • 后台线程的话记住一点: **JVM会在一个进程的所有 非后台线程 结束后, 才会结束运行 **
  • 存活代表 run 方法是否运行结束

中断进程

常见两种方式(本质上没什么区别)

  1. 自定义一个共享标记
  2. 使用 interrupt() 方法来通知 (相当于系统定义的共享标记)
使用自定义的变量来作为标志位
public class test2 {private static class MyRunnable implements Runnable{private static boolean  isQuit = true;@Overridepublic void run() {while(isQuit) {System.out.println("线程执行");try {// 线程执行中Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}// 共享标记修改, 需要终止线程System.out.println("线程终止");}}public static void main(String[] args) throws InterruptedException {MyRunnable target = new MyRunnable();Thread t = new Thread(target, "zrj");t.start();Thread.sleep(10 * 1000);System.out.println("需要在此刻终止线程的运行!");target.isQuit = false;}
}
使用 Thread.interrupted() 或者 Thread.currentThread().isInterrupted()

Thread 内部包含了一个 boolean 类型的变量作为线程是否被中断的标记

在这里插入图片描述

public class test3 {private static class MyRunnable implements Runnable{@Overridepublic void run() {// 如果该标记位没有被设置, 即没有被中断while(!Thread.interrupted()) {System.out.println("进程执行");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();System.out.println("进程阻塞!");break;}}// 标记位被设置, 进程被打断System.out.println("进程终止");}}public static void main(String[] args) throws InterruptedException {MyRunnable target = new MyRunnable();Thread t = new Thread(target, "lty");System.out.println("进程执行!");t.start();Thread.sleep(10 * 1000);System.out.println("打断进程!即设置标记位");t.interrupt();}
}

Thread 收到通知的方式有两种
1.线程因为调用 wait / join / sleep 等方法引起的阻塞, 以异常抛出的方式通知, 清除中断标记
2.如果是内部中断标记被设置, thread 可以通过 两个判断方法来收到通知, 该方式收到通知更及时, 即使线程正在 sleep 也可以马上收到

等待一个线程 - join

在这里插入图片描述

public class test4 {public static void main(String[] args) throws InterruptedException {Runnable target = () -> {for (int i=1 ; i<=10; i++) {try {System.out.println("线程执行中!");Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}System.out.println(Thread.currentThread().getName() + ": 线程执行结束!");};Thread t1 = new Thread(target, "zrj");Thread t2 = new Thread(target, "lty");// t1 开始执行t1.start();// t1 挂起t1.join();// t2 开始执行t2.start();// t2 挂起t2.join();}
}

attention : 对于 join 挂起的线程, 如果没有被唤醒的话, 将永久不会被调用执行

获取当前线程引用

在这里插入图片描述

休眠当前线程

在这里插入图片描述

线程的状态

NEW: 安排了工作, 还未开始行动
RUNNABLE: 可工作的. 又可以分成正在工作中和即将开始工作.
BLOCKED: 这几个都表示排队等着其他事情
WAITING: 这几个都表示排队等着其他事情
TIMED_WAITING: 这几个都表示排队等着其他事情
TERMINATED: 工作完成了.

进程状态之间的转换

在这里插入图片描述

学校教学课本上的图片展示是这样的 (算是一个简略版本)

在这里插入图片描述

给出几个注意的点 :
BLOCKED 表示被锁住状态 ; WAITING 和 TIMED_WAITING 表示等待唤醒状态 .
TIMED_WAITING 线程在等待唤醒, 但设置了时限 ; WAITING 线程没有设置时限 (死等)
Thread.yield() 调用后, 不会改变进程状态, 但会立即让出 CPU, 重新去就绪队列排队 .

线程安全

什么是线程安全?

如果 多线程和单线程环境下 运行的结果相同, 那么我们就说它是线程安全的 .

线程不安全的原因

  1. 修改共享数据
  2. 原子性 (同步互斥)
  3. 可见性
  4. 代码顺序性

什么是原子性?
执行的最小单元

什么是可见性
一个线程对共享变量值的修改, 能够及时的被其他线程看到
在这里插入图片描述
主内存就说硬盘角度的 “内存”, 工作内容可以认为是 cache / 寄存器
因为 CPU 对 cache / 寄存器的访问速度要比内存 快 3-4 个数量级. 而且有些操作需要连续访问 N 次某个变量, 读一次放回去一次速度很慢, 因此我们可以第一次读的时候给放到 寄存器 里, 后续的访问都只访问寄存器, 效率就会大大提升

Java 内存模型 (JMM) : Java 虚拟机规范中定义了 Java 内存模型
目的是屏蔽掉各种硬件和 OS 的内存访问差异, 以实现让 Java 程序在各种平台下都能达到一致的并发效果

代码顺序性
编译器会自动对单线程下的代码进行代码重排序, 遵循的前提是 “保持逻辑不发生变化”, 但是在多线程环境下该前提很难遵守

synchronized 关键字

特性 :

  1. 互斥
  2. 刷新内存 (即保证内存可见性)
  3. 可重入

互斥

synchronized 底层是用 OS 的 mutex lock 实现的
互斥的含义是 每个被 synchronized 维护的临界资源, 不会被多个线程同时执行到 .

某个线程执行

  • 进入 synchronized 修饰的代码块, 相当于加锁
  • 退出 synchronized 修饰的代码块, 相当于解锁

阻塞等待
针对每一把锁, OS 内部都会维护一个等待队列, 当这把锁被某个线程占有的时候, 其他线程再来竞争这把锁, 就上不了锁, 会在队列里等待, 直到之前的线程解锁, 再由 OS 随机唤醒一个 等待队列里的线程来使用这把锁 (没有什么先来后到, 一切随机顺序, 先来的也可能得等很长时间 [你喜欢一个妹子, 追了很久,但不是说, 你先喜欢的, 就是你先谈, 人家就是先喜欢上了别人, 就是一眼万年的和别人在一起了, 你也没辙~~]).

翻译翻译, 什么叫做 TM 的可重入?

可重入 和 不可重入
一个线程中, 对一个对象上了两次锁, 并且中间没有释放锁过程

lock();  //第一次
lock();  //第二次

如果是不可重入锁, 由于第一次加锁, 并没有解锁, 所以第二次加锁会失败, 即该线程会在阻塞队列等待, 但是因为第一次锁的解锁过程一定在这个线程后面的某个地方, 就会产生死锁 (卡死在等待队列, 出不来了 [我卡我自己])
可重入锁呐, 就是会自带一个标识类的对象, 第二次加锁之前会判断该线程是不是之前上锁的线程, 如果是, 那你就进去吧 (eg : 你爸回家了, 如果你要进去, 你爸会给你开门, 如果是不认识的人要进去, 你爸就不会开门)

volatile 关键字

特性: 保证修饰变量的内存可见性

在这里插入图片描述

代码在写入 volatile 修饰的变量的时候

  • 改变线程工作内存的值
  • 刷新主内存的值

代码在读取 volatile 修饰的变量的时候

  • 先读一下主内存的值, 更新工作内存
  • 再从工作内存读取值使用

synchronized 和 volatile 有本质区别
synchronied 保证的是原子性, 衍生出内存可见性这个性质
volatile 保证的是内存可见性, 只是用的时候, 不会读取错误

wait 和 notify

由于线程之间是抢占式执行的, 因此线程之间的先后顺序难以预知
但是我们有方法可以协调多个线程之间的执行先后顺序

  • wait() / wait(long timeout) : 让当前线程进入等待状态
  • notify() / notifyAll() : 唤醒在当前对象上等待的线程

notify() : 随机唤醒一个在当前对象上等待的线程
notifyAll() : 唤醒在当前对象上等待的所有线程
attention : wait() / notify() / notifyAll() 均为 Object 类的方法

wait()

wait 做的事

  • 把当前线程放到等待队列中去
  • 释放当前锁
  • 满足一定条件被唤醒, 重新尝试获取这个锁

wait 要搭配 synchronized 来使用, 脱离 synchronized 使用 wait 会直接抛出异常 .

wait 结束条件

  • 其他线程调用该对象的 notify 方法将其唤醒
  • wait 等待时间超时
  • 其他线程调用该等待线程的 interrupted 方法, 导致其 wait 抛出 InterruptedException 异常

notify() 方法

随机唤醒一个, 指定对象的等待队列中的线程
attention : 在 notify() 方法后, 当前线程不会马上释放该对象锁, 要等到执行 notify() 方法的线程将程序执行完, 也就是退出同步代码块之后, 才会释放对象锁 (即确保有线程被唤醒之后, 才会释放原本的锁)

notifyAll() 方法

有个注意点, 虽然 notifyAll() 是唤醒当前对象等待队列中的所有线程, 但是这些线程还是需要竞争锁, 所有虽然全部唤醒, 但是并不是同时执行, 仍然是一个一个的执行 .

wait & notify 示例代码

public class test5 {static class waitTask implements Runnable{private Object locker;public waitTask(Object locker) {this.locker = locker;}@Overridepublic void run() {while (true) {try {System.out.println("wait 开始");locker.wait();System.out.println("wait 结束");} catch (InterruptedException e) {e.printStackTrace();}}}}static class notifyTask implements Runnable {private Object locker;public notifyTask(Object locker) {this.locker = locker;}@Overridepublic void run() {synchronized (locker) {System.out.println("notify 开始");locker.notify();System.out.println("notify 结束");}}}public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(new waitTask(locker));Thread t2 = new Thread(new notifyTask(locker));t1.start();Thread.sleep(1000);t2.start();}
}

wait & slepp

相同点 : 都可以让线程放弃执行一段时间
不同点 :

  • wait 用于线程之间的通信, sleep 用于让线程阻塞
  • wait 需要搭配 synchronized 使用, sleep 不需要
  • wait 是 Object 类的方法, sleep 是 Thread 的静态方法

多线程相关的几个设计模式

单例模式

单例模式就是全局范围内, 该对象只有一个实例

饿汉版本的单例模式 (声明的同时就创建)

class Singleton{private static Singleton instance = new Singleton();   private Singleton() {}private static Singleton getInstance() {return instance;}
}

懒汉版本的单例模式 (先声明, 什么时候用到, 什么时候创建)

class Singleton{private static Singleton instance = null;private Singleton(){}public static Singleton getInstance() {if(instance == null) {instance = new Singleton();}return instance;}
}

懒汉模式的多线程版本

class Singleton{private static Singleton instance = null;private Singleton(){}public synchronized static Singleton getInstance() {if(instance == null) {instance = new Singleton();}return instance;}
}

对于上述版本, 你会发现每次使用的时候都会被加锁, 花销会很大, 因此对此进行改进

class Singleton{private volatile static Singleton instance = null; // volatile 保证内存可见性private Singleton(){}public static Singleton getInstance() {if(instance == null) { // 加锁/解锁开销比较高, 这里判断只对首次创建实例的时候进行加锁.synchronized (Singleton.class) {if(instance == null) { // 首次创建完实例后, 仍有很多线程排队在等待队列, 用这个判断让其他等待队列中的线程结束instance = new Singleton();}}}return instance;}
}

阻塞队列

阻塞队列是什么?
特殊的一种队列, redis 中的 blpop, brpop 也使用了阻塞思想.
既然是队列, 就遵循先进先出思想
阻塞队列是一种线程安全的数据结构,具有特性如下 :

  • 当队列满, 继续入队列就会阻塞, 直到队列中有空余位置
  • 当队列空, 继续出队列就会阻塞, 直到队列中有元素

典型应用场景 : 生产者消费者模型

定时器

达到某个时间, 就执行某块代码

标准库中的定时器

Timer 类, 核心方法为 schedule .
schedule 包含两个参数, 第一个参数指定即将要执行的任务代码, 第二个参数指定多长时间后执行 .

Timer timer= new Timer();
timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("hello lty!");}
}, 3000);

线程池

线程池最大的好处就说, 减少每次启动, 销毁线程的损耗

标准库中的线程池

  • 使用 Executors.newFixedThreadPool(N) 可以创建出容量为 N 的线程池, 内含 N 个线程
    返回值为 ExecutotService.submit 可以注册一个任务到线程池中
ExecutorService pool = Executors.newFixedThreadPool(10);
pool.submit(new Runnable() {@Overridepublic void run() {System.out.println("hello lty!");}
});

创建线程池的几种方式 (Executors 本质上是对 ThreadPoolExecutor 类的封装)

  • newFixedThreadPool: 创建固定线程数的线程池
  • newCachedThreadPool: 创建线程数目动态增长的线程池.
  • newSingleThreadExecutor: 创建只包含单个线程的线程池.
  • newScheduledThreadPool: 设定 延迟时间后执行命令,或者定期执行命令. 是进阶版的 Timer.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/268037.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Knowledge Graph知识图谱—8. Web Ontology Language (OWL)

8. Web Ontology Language (OWL) 在RDFs不可能实现&#xff1a; Property cardinalities, Functional properties, Class disjointness, we cannot produce contradictions, circumvent the Non Unique Naming Assumption, circumvent the Open World Assumption 8.1 OWL Tr…

BGR2RGB

numpy读取的时候进行img[&#xff1a;&#xff0c;&#xff1a;&#xff0c;&#xff1a;&#xff1a;-1]这个操作就可以进行BGR转RGB的操作&#xff08;读入是BGR, 否则就是RGB2BGR&#xff09;&#xff0c;这个不知道的话&#xff0c;穿越门写的非常清晰&#xff1a; https:/…

数据结构:栈(Stack)的各种操作(入栈,出栈,判断栈非空,判断栈已满,附源码)

前言&#xff1a;在前面的文章中&#xff0c;我们讲解了顺序表&#xff0c;单链表&#xff0c;双向链表。而我们今天要分享的栈则是基于之前的数据结构上搭建的&#xff0c;但是相较于顺序表和链表来说&#xff0c;栈的实现就非常简单了。 目录 一.栈(Stack)的概念 二.栈的数…

mysql数据恢复

使用MySQL第三方工具binlog2sql binlog2sql&#xff0c;一款基于python开发的开源工具&#xff0c;是由大众点评团队的DBA使用python开发出来的&#xff0c;从MySQL binlog解析出你要的SQL。根据不同选项&#xff0c;你可以得到原始SQL、回滚SQL、去除主键的INSERT SQL等。其功…

怎么在电脑桌面上使用备忘录软件?

在忙碌的办公室&#xff0c;上班族时常需要一款能帮助他们随时记录信息、待办事项和日程安排的备忘录软件。想象一下&#xff0c;你正在开会&#xff0c;突然想到了一个重要的待办事项&#xff0c;或者是接听了一个电话&#xff0c;得知了一个即将到期的任务。在这些情境下&…

python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)

今天讲一下图像入门学习教程---------图像分类。 图像分类是目标检测任务的基础&#xff0c;学会以下操作&#xff0c;打下良好基础&#xff01; 数据布置 以三分类为例&#xff0c;数据布置放置示例&#xff0c;也就是dataset下有两个文件夹&#xff1a;val和train。train和…

堆排序算法及实现

1、堆排序定义 堆是一棵顺序存储的完全二叉树。 其中每个结点的关键字都不大于其孩子结点的关键字&#xff0c;这样的堆称为小根堆。其中每个结点的关键字都不小于其孩子结点的关键字&#xff0c;这样的堆称为大根堆。 举例来说&#xff0c;对于n个元素的序列{R0, R1, ... ,…

2023年度盘点:AIGC、AGI、GhatGPT、人工智能大模型必读书单

2023年是人工智能大语言模型大爆发的一年&#xff0c;一些概念和英文缩写也在这一年里集中出现&#xff0c;很容易混淆&#xff0c;甚至把人搞懵。 LLM&#xff1a;Large Language Model&#xff0c;即大语言模型&#xff0c;旨在理解和生成人类语言。LLM的特点是规模庞大&…

苹果IOS应用上架AppStore的流程与教程

快打包生成的苹果APP上架到苹果官方appstore商店的详细流程与教程 第一步&#xff1a;创建app发布证书以及配置文件 1、打开苹果开发者中心网站&#xff1a;https://developer.apple.com&#xff0c;点击右上角 Account 使用开发者账号登录&#xff0c;如下图所示&#xff1a…

七大排序动态图

1.冒泡排序 2.插入排序 把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中&#xff0c;直到所有的记录插入完为止&#xff0c;得到一个新的有序序列 当插入第i(i>1)个元素时&#xff0c;前面的array[0],array[1],…,array[i-1]已经排好序&#xff0c…

产品固件烧写方案

1、前言 一成熟的量产的嵌入式产品&#xff0c;软件一般分为BootLoader和App&#xff0c;BootLoader用于启动校验、App升级、App版本回滚等功能&#xff0c;BootLoader在cpu上电第一阶段中运行&#xff0c;之后跳转至App地址执行应用程序。 因此&#xff0c;在发布固件的时候&a…

css 表示具有特定类或者其他属性的某种标签类型的元素

需求 通过 css 选择器获取某种标签&#xff08;如&#xff1a;div、input 等&#xff09;具有某个属性&#xff08;如&#xff1a;class、id 等&#xff09;的元素&#xff0c;从而修改其样式。 代码 通过 [标签].[属性] 的方式来获取 <div class"test">&l…