【C语言(十三)】

自定义类型:结构体

一、结构体类型的声明 

1.1、结构体回顾

结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。 

1.1.1、结构的声明 

例如描述⼀个学生:

struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢
 1.1.2、结构体变量的创建和初始化
#include <stdio.h>struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
};int main()
{//按照结构体成员的顺序初始化struct Stu s = { "张三", 20, "男", "20230818001" };printf("name: %s\n", s.name);printf("age : %d\n", s.age);printf("sex : %s\n", s.sex);printf("id : %s\n", s.id);//按照指定的顺序初始化struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥"};printf("name: %s\n", s2.name);printf("age : %d\n", s2.age);printf("sex : %s\n", s2.sex);printf("id : %s\n", s2.id);return 0;
}

1.2、结构的特殊声明

在声明结构的时候,可以不完全的声明。 

比如: 

//匿名结构体类型
struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}a[20], * p;

 上面的两个结构在声明的时候省略掉了结构体标签(tag)。

 那么问题来了?

警告: 

编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用⼀次。 

1.3、结构的自引用 

在结构中包含⼀个类型为该结构本身的成员是否可以呢? 

如,定义⼀个链表的节点:

struct Node
{int data;struct Node next;
};
上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?

仔细分析,其实是不行的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。

正确的自引用方式: 

struct Node
{int data;struct Node* next;
};
在结构体自引用使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引入问题,看看
下面的代码,可行吗?

答案是不行的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。

解决方案如下:定义结构体不要使用匿名结构体了

typedef struct Node
{int data;struct Node* next;
}Node;

二、结构体内存对齐 

我们已经掌握了结构体的基本使用了。
现在我们深入讨论⼀个问题:计算结构体的大小。
这也是⼀个特别热门的考点: 结构体内存对齐。

2.1、对齐规则 

首先得掌握结构体的对齐规则: 

1. 结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的⼀个对齐数 与 该成员变量大小的较小值
        - VS 中默认的值为 8
        - Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小
3. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。
//练习1
struct S1
{char c1;int i;char c2;
};//练习2
struct S2
{char c1;char c2;int i;
};int main()
{struct S1 s1 = { 0 };struct S2 s2 = { 0 };printf("%zd\n", sizeof(struct S1));printf("%zd\n", sizeof(struct S2));return 0;
}

#include <stddef.h>
//宏
//offsetof - 计算结构体成员相较于起始位置的偏移量//练习3
struct S3
{double d;char c;int i;
};//练习4-结构体嵌套问题
struct S4
{char c1;struct S3 s3;double d;
};

2.2、为什么存在内存对齐?

大部分的参考资料都是这样说的:
1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用⼀个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到: 

//例如:
struct S1
{char c1;int i;char c2;
};struct S2
{char c1;char c2;int i;
};

 S1 S2 类型的成员⼀模⼀样,但是 S1 S2 所占空间的大小有了⼀些区别。

2.3、修改默认对齐数 

 #pragma 这个预处理指令,可以改变编译器的默认对齐数。

#include <stdio.h>#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};#pragma pack()//取消设置的对⻬数,还原为默认int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}
结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

三、结构体传参 

struct S
{int data[1000];int num;
};
struct S s = { {1,2,3,4}, 1000 };//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}

上面的 print1 print2 函数哪个好些?

答案是:首选print2函数。

结论:

结构体传参的时候,要传结构体的地址。

四、结构体实现位段

4.1、什么是位段?

位段的声明和结构是类似的,有两个不同:

1. 位段的成员必须是 int unsigned int signed int ,在C99中位段成员的类型也可以选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。
比如:
struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};
A就是⼀个位段类型。
那位段A所占内存的大小是多少?

4.2、位段的内存分配 

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
//⼀个例⼦
struct S
{char a:3;char b:4;char c:5;char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;//空间是如何开辟的?

以上我们做了假设: ①假设内存空间从右向左使用;②如果剩余的空间不够下一个成员使用,就浪费。

4.3、位段的跨平台问题 

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最⼤16,32位机器最大32,写成27,在16位机器会出问题。)
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

4.4、位段的应用 

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小⼀些,对网络的畅通是有帮助的。

 

4.5、位段使用的注意事项 

位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输⼊值,只能是先输入放在⼀个变量中,然后赋值给位段的成员。
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};int main()
{struct A sa = { 0 };scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/276962.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年半导体存储器行业研究报告

第一章 行业概况 1.1 定义 存储器&#xff0c;作为信息技术领域的关键组件&#xff0c;扮演着至关重要的角色。它们主要通过磁性材料或半导体材料作为介质进行信息的存储和访问。在当前的数字化时代&#xff0c;存储器的应用范围极为广泛&#xff0c;几乎涵盖了所有电子产品领…

计算目标检测和语义分割的PR

需求描述 实际工作中&#xff0c;相比于mAP项目更加关心的是特定阈值下的precision和recall结果&#xff1b;由于本次的GT中除了目标框之外还存在多边形标注&#xff0c;为此&#xff0c;计算IoU的方式从框与框之间变成了mask之间&#xff1b; 本文的代码适用于MMDetection下的…

基于单片机智能家具无线遥控控制系统设计

**单片机设计介绍&#xff0c;基于单片机智能家具无线遥控控制系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的智能家具无线遥控控制系统设计可以实现对家具&#xff08;如灯具、窗帘、空调等&#xff09;的…

yolov8实战第二天——yolov8训练结果分析(保姆式解读)

yolov8实战第一天——yolov8部署并训练自己的数据集&#xff08;保姆式教程&#xff09;-CSDN博客 我们在上一篇文章训练了一个老鼠的yolov8检测模型&#xff0c;训练结果如下图&#xff0c;接下来我们就详细解析下面几张图。 一、混淆矩阵 正确挑选&#xff08;正确&#…

STM32 寄存器配置笔记——USART DMA发送

一、DMA介绍 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传 输。无须CPU干预&#xff0c;数据可以通过DMA快速地移动&#xff0c;这就节省了CPU的资源来做其他操作。当产品对于时序要求较严格时&#xff0c;外设使用DMA的方式能够减轻CPU负…

使用Axure RP结合内网穿透工具制作本地静态web页面并实现公网访问

作者简介&#xff1a; 懒大王敲代码&#xff0c;正在学习嵌入式方向有关课程stm32&#xff0c;网络编程&#xff0c;数据结构C/C等 今天给大家讲解使用Axure RP结合内网穿透工具制作本地静态web页面并实现公网访问&#xff0c;希望大家能觉得实用&#xff01; 欢迎大家点赞 &am…

Linux--Docker容器

这里写目录标题 简介名词解释作用 指令在本地创建容器的过程&#xff1a;&#xff08;这里以tomcat为例&#xff09;访问容器端口映射目录挂载验证端口映射验证目录挂载 删除镜像多小组访问容器mysql容器 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一…

民生银行三季度业绩双降:资产质量下行,屡吃“千万元”级别罚单

撰稿|行星 来源|贝多财经 中国银行研究院发布《2023年四季度经济金融展望报告》显示&#xff0c;今年以来全球经济呈现弱修复态势&#xff0c;虽然国内依旧面临较大外部环境压力&#xff0c;外需总体回落&#xff0c;但三季度经济持续恢复&#xff0c;经济企稳趋势初显。 在此…

宝塔面板快速搭建本地网站结合内网穿透实现远程访问【无需公网IP】

文章目录 前言1. 环境安装2. 安装cpolar内网穿透3. 内网穿透4. 固定http地址5. 配置二级子域名6. 创建一个测试页面 前言 宝塔面板作为简单好用的服务器运维管理面板&#xff0c;它支持Linux/Windows系统&#xff0c;我们可用它来一键配置LAMP/LNMP环境、网站、数据库、FTP等&…

嵌入式C语言变量、数组、指针初始化的多种操作

在敲代码的时候&#xff0c;我们会给变量一个初始值&#xff0c;以防止因为编译器的原因造成变量初始值的不确定性。 对于数值类型的变量往往初始化为0&#xff0c;但对于其他类型的变量&#xff0c;如字符型、指针型等变量等该如何初始化呢&#xff1f; 数值类变量初始化 整…

vue2 echarts不同角色多个类型数据的柱状图

前端代码&#xff1a; 先按照echarts插件。在页面里引用 import * as echarts from "echarts";设置div <div style"width:100%;height:250px;margin-top: 4px;" id"addressChart"></div>方法: addressEcharts() {const option {g…