0x21 树与图的遍历

0x21 树与图的遍历

树与图最常见的储存方式就是使用一个邻接表保存它们的边集。邻接表以head数组为表头,使用veredge数组分别存储边的终点和权值,使用next数组模拟链表指针(就像我们在0x13节中讲解邻接表所给出的代码那样)。

1.树与图的深度优先遍历,树的DFS序、深度和重心

深度优先遍历,就是在每个点 x x x上面对多条分支时,任意选一条边走下去,执行递归,直至回溯到点 x x x后,再考虑走向其他的边,如下图所示。根据上面提到的存储方式,我们可以采用下面的代码,调用 d f s ( 1 ) dfs(1) dfs(1),对一张图进行深度优先遍历。

在这里插入图片描述

void dfs(int x)
{v[x]=1; //记录点x被访问过,v是visit的缩写for(int i=head[x];i;i=next[i]){int y=ver[i];if(v[y]) continue; //点y已经被访问过了dfs(y);}
}

这段代码访问每个点和每条边恰好一次(如果是无向边,正反个各访问一次),其时间复杂度为 O ( N + M ) O(N+M) O(N+M),其中 M M M为边数。以这段代码为框架,我们可以统计许多关于树和图的基本信息。

时间戳

按照上述深度优先遍历的过程,以每个节点第一次被访问( v [ x ] v[x] v[x]被赋值为1时)的顺序,依次给予这 N N N个节点 1 ∼ N 1\sim N 1N的整数标记,该标记就被称为时间戳,记为 d f n dfn dfn

例如,在上图中, d f n [ 1 ] = 1 , d f n [ 2 ] = 2 , d f n [ 8 ] = 3 , d f n [ 5 ] = 4 , d f n [ 7 ] = 5 , d f n [ 4 ] = 6 , d f n [ 3 ] = 7 , d f n [ 9 ] = 8 , d f n [ 6 ] = 9 dfn[1]=1,dfn[2]=2,dfn[8]=3,dfn[5]=4,dfn[7]=5,dfn[4]=6,dfn[3]=7,dfn[9]=8,dfn[6]=9 dfn[1]=1,dfn[2]=2,dfn[8]=3,dfn[5]=4,dfn[7]=5,dfn[4]=6,dfn[3]=7,dfn[9]=8,dfn[6]=9

树的DFS​序

一般来说,我们在对树进行深度优先遍历时,对于每个节点,在刚入递归后以及即将回溯前各记录一次该点的编号,最后产生的长度为 2 N 2N 2N的节点序列就称为树的 D F S DFS DFS序。

树的DFS可以不使用 v v v数组去记录每个点是否被访问过,而在DFS中加入这个节点的父节点,只要不遍历回父节点,就会一直向子节点遍历(利用了树每一个节点只有一个父节点)。

void dfs(int x)
{a[++m]=x; //a数组存储DFS序v[x]=1; //记录点x被访问过for(int i=head[x];i;i=next[i]){int y=ver[i];if(v[y]) continue;dfs(y);}a[++m]=x;
}

D F S DFS DFS序的特点是:每个节点 x x x的编号在序列中恰好出现两次。设这两次出现的位置为 L [ x ] L[x] L[x] R [ x ] R[x] R[x],那么闭区间 [ L [ x ] , R [ x ] ] [L[x],R[x]] [L[x],R[x]]就是以 x x x为根的子树的 D F S DFS DFS序。这使我们在很多树相关的问题中,可以通过 D F S DFS DFS序把子树统计转化为序列上的区间统计。

在这里插入图片描述

另外,二叉树的先序、中序与后序遍历序列,也就是通过深度优先遍历产生的,大多数程序设计入门级的书籍上都有详细讲解,在此就不再赘述。读者应该掌握这几种遍历,以及它们之间的联系与转化。

树的深度(自顶而下统计)

树中各个节点的深度是一种自顶而下的统计信息。起初,我们已知根节点的深度为0。若节点 x x x的深度为 d [ x ] d[x] d[x],则它的子节点 y y y的深度就是 d [ y ] = d [ x ] + 1 d[y]=d[x]+1 d[y]=d[x]+1。在深度优先遍历的过程中结合自顶而下的递推,就可以求出每个节点的深度 d d d

void dfs(int x)
{v[x]=1;for(int i=head[x];i;i=next[i]){int y=ver[i];if(v[y]) continue;d[y]=d[x]+1;dfs(y);}
}

树的重心(自底而上统计)

当然,也有很多信息是自底而上进行统计的,比如以每个节点 x x x为根的子树大小 s i z e [ x ] size[x] size[x]。对于叶子节点,我们已知“以它为根的子树”大小为1。若节点 x x x k k k个子节点 y 1 ∼ y k y_1\sim y_k y1yk,并且以 y 1 ∼ y k y_1\sim y_k y1yk为根的子树大小分别是 s i z e [ y 1 ] , s i z e [ y 2 ] , . . . , s i z e [ y k ] size[y_1],size[y_2],...,size[y_k] size[y1],size[y2],...,size[yk],则以 x x x为根的子树的大小就是 s i z e [ x ] = s i z e [ y 1 ] + s i z e [ y 2 ] + . . . + s i z e [ y k ] + 1 size[x]=size[y_1]+size[y_2]+...+size[y_k]+1 size[x]=size[y1]+size[y2]+...+size[yk]+1

在这里插入图片描述

对于一个节点 x x x,如果我们把它从树中删除,那么原来的一棵树可能就会分成若干个不相连的的部分,其中每一部分都是一棵子树。设 m a x _ p a r t ( x ) max\_part(x) max_part(x)表示在删除节点 x x x后产生的子树中,最大的一棵的大小。使 m a x _ p a r t max\_part max_part函数取到最小值的节点 p p p就被称为整棵树的重心。例如上图数的重心应该是节点1。通过下面的代码,我们可以统计出 s i z e size size数组,并求出树的重心。

void dfs(int x)
{v[x]=1;size[x]=1; //子树的大小int max_part=0;   //删掉x后分成的最大子树的大小for(int i=head[x];i;i=next[i]){int y=ver[i];if(v[y]) continue;dfs(y);size[x]+=size[y]; //从子节点向父节点递推max_part=max(max_part,size[y]);}max_part=max(max_part,n-size[x]); //n为整棵树的节点数目if(max_part<ans){ans=max_part; //全局变量ans记录重心对应的max_part值pos=x;        //全局变量pos记录重心}    
}

图的连通块划分

上面的代码每从 x x x开始一次遍历,就会访问 x x x能够到达的所有的点与边。因此,通过多次深度优先遍历,可以划分出一张无向图中的各个连通块。同理,对于一个森林进行深度优先遍历,可以划分出森林中的每棵树。如下面的代码所示, c n t cnt cnt就是无向图包含的连通块的个数, v v v数组标记了每个点属于哪个连通块。

void dfs(int x)
{v[x]=cnt;for(int i=head[x];i;i=next[i]){int y=ver[i];if(v[y]) continue;dfs(y);}
}
for(int i=1;i<=n;++i) //在int main()中
{if(!v[i]){cnt++;dfs(i);}
}

2.树与图的广度优先遍历,拓扑排序

树与图的广度优先遍历需要使用一个队列来实现。起初,队列中仅包含一个起点(例如1号节点)。在广度优先遍历的过程中,我们不断从队头取出一个节点 x x x,对于 x x x面对的多条分支,把沿着每条分支到达的下一个节点(如果尚未访问过)插入队尾。重复执行上述过程直到队列为空。

在这里插入图片描述

我们可以采用下面的代码对一张图进行广度优先遍历(关于代码中的 S T L q u e u e STL\ queue STL queue,参见0x71节)。

void bfs()
{memset(d,0,sizeof(d));queue<int> q;q.push(1);d[1]=1;while(!q.empty()){int x=q.front();q.pop();for(int i=head[x];i;i=next[i]){int y=ver[i];if(d[y]) continue;d[y]=d[x]+1;q.push(y);}}
}

在上面的代码中,我们在广度优先遍历的过程中顺便求出了一个 d d d数组。对于一棵树来讲, d [ x ] d[x] d[x]就是点 x x x在树中的深度。对于一张图来讲, d [ x ] d[x] d[x]被称为点 x x x的层次(从起点1走到点 x x x需要经过的最少点数)。从代码和示意图中我们可以发现,广度优先遍历是一种按照层次顺序进行访问的方法,它具有如下两个重要性质:

1.在访问完所有的第 i i i层节点后,才会开始访问第 i + 1 i+1 i+1层节点

2.任意时刻,队列中至多有两个层次的节点。若其中一部分节点属于第 i i i层,则另一部分节点属于 i + 1 i+1 i+1层,并且所有第 i i i层节点排在第 i + 1 i+1 i+1层节点之前。也就是说,广度优先遍历队列中的元素关于层次满足“两段性”和“单调性”。

这两条性质是所有广度优先思想的基础。我们在0x26节的“广搜变形”中会再次提及并探讨。与深度优先遍历一样,上面这段代码的时间复杂度也是 O ( N + M ) O(N+M) O(N+M)

拓扑排序

给定一张有向无环图,若一个由图中所有点构成的序列 A A A满足:对于图中的每条边 ( x , y ) (x,y) (x,y) x x x A A A中都出现在 y y y之前,则称 A A A是该有向无环图定点的一个拓扑序。求解序列 A A A的过程就称为拓扑排序。

拓扑排序过程的思想非常简单,我们只需要不断选择图中入度为0的节点 x x x,然后把 x x x连向的点的入度减1。我们可以结合广度优先遍历的框架来高效地实现这个过程:

1.建立空的拓扑序列 A A A

2.预处理出所有点的入度 d e g [ i ] deg[i] deg[i],起初把所有入度为0的点入队。

3.取出队头节点 x x x,把 x x x加入拓扑排序的 A A A的末尾。

4.对于从 x x x出发的每条边 ( x , y ) (x,y) (x,y),把 d e g [ y ] deg[y] deg[y]减1。若被减为0,则把 y y y入队。

5.重复第 3 ∼ 4 3\sim4 34步知道队列为空,此时 A A A即为所求。

拓扑排序可以判定有向图中是否存在环。我们可以对任意有向图执行上述过程,在完成后检查 A A A序列的长度。 A A A序列的长度小于图中点的数量,则说明某些节点未被遍历,进而说明图中有环。读者可以参考下面的程序,画图模拟拓扑排序算法。

void add(int x,int y)
{ver[++tot]=y,next[tot]=head[x],head[x]=tot;deg[y]++;
}
void topsort()
{queue<int> q;for(int i=1;i<=n;++i)if(deg[i]==0) q.push(i);while(!q.empty()){int x=q.front();q.pop();a[++cnt]=x;for(int i=head[x];i;i=next[i]){int y=ver[i];if(--deg[y]==0) q.push(y);}}
}
int main()
{cin>>n>>m;for(int i=1;i<=m;++i){int x,y;scanf("%d%d",&x,&y);add(x,y);}topsort();for(int i=1;i<=cnt;++i)printf("%d ",a[i]);cout<<endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/277008.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【评测脚本】agent资源监控

背景 在之前的文章中提到过,我们在测试过程中需要对机器的资源进行评测。在实际工作中,我们还会经常遇到的场景就是对于agent-server类型的业务,当部署完成后,需要对部署在机器上的agent进行资源占用的观测,不能舍本逐末,由于agent的异常资源占用,导致原有业务受机器资…

iptables基础 iptables-save iptables-persistent持久化

介绍 iptables由上而下&#xff0c;由Tables&#xff0c;Chains&#xff0c;Rules组成。 一、iptables的表tables与链chains iptables有Filter, NAT, Mangle, Raw四种内建表&#xff1a; 1. Filter表 Filter是iptables的默认表&#xff0c;它有以下三种内建链(chains)&…

【Qt】Qt获取操作系统和网络信息示例

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Qt获取操作系统和网络信息示例。 学其所用&#xff0c;用其所学。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下次更…

NFS|在linux环境下的安装和配置NFS

简介 NFS全称网络文件系统&#xff0c;可用于不同服务器之间的文件共享。 接下来介绍下NFS在linux环境下安装和配置。主要分为服务端和客户端。 服务端安装 开启rpcbind/portmap和nfs服务 # service portmaper start [rootlocalhost java]# service portmap start Redirectin…

linux 查看服务启动时间

文章目录 linux 查看服务启动时间参数解析 linux 查看服务启动时间 [root104 ~]# ps -o lstart -p ps -ef |grep -v grep |grep "zookeeper"|awk {print$2}STARTED Fri Dec 15 16:54:10 2023参数解析 linux 命令中 ps -ef 详解 ps -ef表示查看全格式的进程。 ps …

【Spring Boot】视图渲染技术之Freemarker

一、引言 1、什么是Freemarker FreeMarker是一款模板引擎&#xff0c;基于模板和要改变的数据&#xff0c;并用来生成输出文本&#xff08;HTML网页、电子邮件、配置文件、源代码等&#xff09;的通用工具。它不是面向最终用户的&#xff0c;而是一个Java类库&#xff0c;是一款…

JVM虚拟机系统性学习-JVM调优之通过gceasy分析GC日志对堆、元空间、线程堆栈和垃圾回收器进行调优

通过 gceasy工具对生成的 GC 日志进行分析 这里使用的 JDK 版本为 JDK8&#xff01; 在分析 GC 日志时&#xff0c;可以同时采用多种工具&#xff08;Arthas、gceasy、JVM 连接 Graphana 监控&#xff09;进行分析&#xff0c;避免某种工具分析不准确 gceasy 每个月只可以免费…

未来应用从何而来:认知力延伸、边界突破、回归云与产业

文 | 智能相对论 作者 | 沈浪 或许&#xff0c;谁也没想到未来应用来的如此之快&#xff0c;现如今传统应用从开发到体验&#xff0c;已经进入了一个前所未有的颠覆性改革阶段。 不久前&#xff0c;美国人工智能公司OpenAI举办开发者大会。在现场&#xff0c;公司创始人Sam …

7+m6A+分型+实验,甲基化方向的生信思路,没有思路的同学可参考

今天给同学们分享一篇生信文章“Landscape analysis of m6A modification regulators related biological functions and immune characteristics in myasthenia gravis”&#xff0c;这篇文章发表在J Transl Med期刊上&#xff0c;影响因子为7.4。 结果解读&#xff1a; MG相…

浅谈MapReduce

MapReduce是一个抽象的分布式计算模型&#xff0c;主要对键值对进行运算处理。用户需要提供两个自定义函数&#xff1a; map&#xff1a;用于接受输入&#xff0c;并生成中间键值对。reduce&#xff1a;接受map输出的中间键值对集合&#xff0c;进行sorting后进行合并和数据规…

AI日报:谷歌Gemini Pro即将面向企业和开发者

文章目录 总览Gemini介绍 模型能力产品API其他产品Imagen2和其他新闻Duet AI 总览 现在&#xff0c;您可以免费访问Gemini Pro的API&#xff0c;这是谷歌最新大型语言模型的第一个版本。 Gemini 介绍 谷歌通过其API让企业和开发者第一次看到了其最强大的大型语言模型Gemini。…

NXP应用随记(四):eMios阅读随记-整体功能概述

目录 1、eMios IP介绍 2、时钟结构 3、通道类型 4、功能介绍 5、中断与DMA 6、EMIOS -通道分配建议(针对S32K312) 1、eMios IP介绍 Emios是什么&#xff1f;eMIOS提供了独立的通道(UCs)&#xff0c;您可以配置这些通道来为不同的功能生成或测量时间事件。 每个eMIOS实例最…