逻辑回归的介绍和应用

逻辑回归的介绍

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高

1.1 逻辑回归的应用

逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。

逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

Demo实践

Step1:库函数导入

##  基础函数库
import numpy as np ## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

Step2:模型训练

##Demo演示LogisticRegression分类## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])## 调用逻辑回归模型
lr_clf = LogisticRegression()## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

Step3:模型参数查看

## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

Step4:数据和模型可视化

## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()
# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')plt.show()
### 可视化预测新样本plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')plt.show()

Step5:模型预测

## 在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

逻辑回归 原理简介:

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:l

  

其对应的函数图像可以表示如下:

import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

  

通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且logi(⋅)函数的取值范围为(0,1)(0,1)

对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的w 从而得到一个针对于当前数据的特征逻辑回归模型。

而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/278153.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于YOLOv8深度学习的高精度车辆行人检测与计数系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…

YOLOv8 图片目标计数 | 特定目标进行计数

全类别计数特定类别计数如何使用 YOLOv8 进行对象计数 有很多同学留言说想学 YOLOv8 目标计数。那么今天这篇博客,我将教大家如何使用 YOLOv8 进行对象计数。YOLOv8 是一种非常强大的对象检测模型,它可以识别图像中的各种对象。我们将学习如何利用这个模型对特定对象进行计数…

Unity中URP Shader 的 SRP Batcher

文章目录 前言一、SRP Batcher是什么二、SRP Batcher的使用条件1、可编程渲染管线2、我们用URP作为例子3、URP 设置中 Use SRP Batcher开启4、使 SRP Batcher 代码路径能够渲染对象5、使着色器与 SRP Batcher 兼容: 三、不同合批之间的区别BuildIn Render Pipeline下…

IDEA新建jdk8 spring boot项目

今天新建spring boot项目发现JDK版本最低可选17。 但是目前用的最多的还是JDK8啊。 解决办法 Server URL中设置: https://start.aliyun.com/设置完成后,又可以愉快的用jdk8创建项目了。 参考 https://blog.csdn.net/imbzz/article/details/13469117…

轻松制作健身预约小程序

如果你想制作一个健身预约小程序,实现高效预约与健身管理,可以按照以下步骤进行操作。 第一步:注册登录乔拓云平台,进入后台 第二步:点击【轻应用小程序】,进入设计小程序页面。 第三步:在设计小…

SAP ABAP 面试题交流

1.列举AT事件并说明其作用,AT事件中的工作区有何不同? AT FIRST 循环loop中执行第一条数据 AT LAST 循环loop中执行最后一条数据 AT NEW 循环loop中指定字段(包含指定字段)记录与上一条记录不一致数据执行 AT END OF 循环loo…

计算机网络快速刷题

自用//奈奎斯特定理和香农定理计算题 参考博客:UDP协议是什么?作用是什么? 肝了,整理了8张图详解ARP原理 【网络协议详解】——FTP系统协议(学习笔记) 在OSI参考模型中&am…

Spring Boot整合Sharding-JDBC实现数据脱敏

目录 背景ShardingSphere脱敏规则sharding-jdbc数据脱敏数据脱敏配置数据分片 数据脱敏配置 背景 对互联网公司、传统行业来说,数据安全一直是极为重视和敏感的话题。数据脱敏是指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据的可靠保护…

《Kotlin核心编程》笔记:面向对象

kotlin 中的类 // Kotlin中的一个类 class Bird {val weight: Double 500.0val color: String "blue"val age: Int 1fun fly() { } // 全局可见 }把上述代码反编译成Java的版本,然后分析它们具体的差异: public final class Bird {privat…

Windows 11上边两个空格导致我多熬了1个多小时

将图中的文件路径复制,然后到文件管理器里边去搜索。 发现找不到,可是明明就在这里啊。 我百思不得其解,还以为是IDEA出了问题,我只能是重新启动项目,结果还是告诉我找不到文件。 要是同一个目录下已经有一个名为a…

【Spring】07 懒加载

文章目录 1.定义2. 作用3. 配置方式1)XML配置2)Java配置3)注解方式 4. 应用场景5. 注意事项总结 1.定义 懒加载(Lazy Initialization)是Spring 框架中的一项强大的特性,它允许我们推迟 Bean 的初始化&…

Docker-consule 服务发现与注册

consul服务更新和服务发现 什么是服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问。直到后来出现了多个节点的分布式架构&…