智能优化算法应用:基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.静电放电算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用静电放电算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.静电放电算法

静电放电算法原理请参考:https://blog.csdn.net/u011835903/article/details/118755197
静电放电算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

静电放电算法参数如下:

%% 设定静电放电优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明静电放电算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/278633.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UniGUI 之UniDBGrid

目录 1]DataSource设置 2]显示MEMO类型里的文字 3]显示悬浮提示 4]显示当前记录及总记录数 5]读取所有记录,及分页 6]在前面加上序号列 7]不显示标题栏 8]列排序 9]编辑 和 更新 数据 10]获得某单元格里的内容 11]标题别名 12]将某列设置为CheckBox格式 13]列标题…

列表优先于数组

在Java中,列表(List)通常优于数组,因为列表提供了更灵活的操作和动态调整大小的能力。下面是一个例子,展示了为什么在某些情况下使用列表比数组更好: import java.util.ArrayList; import java.util.List;…

命令调用先构建hashTable

GPT 代码改 #include <stdio.h> #include <stdlib.h> #include <string.h>#define TABLE_SIZE 256struct Node {char *key;void *value;struct Node *next; };struct HashTable {struct Node *table[TABLE_SIZE]; };void initHashTable(struct HashTable *ha…

用CC三维建模建出的OSGB格式,用模方打不开,显示该路径包含OSGB瓦块数量0,是什么原因?

答&#xff1a;模方只识别tile命名的模型文件&#xff0c;此模型是不分块输出&#xff0c;要平面切块重新跑。 模方是一款针对实景三维模型的冗余碎片、水面残缺、道路不平、标牌破损、纹理拉伸模糊等共性问题研发的实景三维模型修复编辑软件。模方4.1新增自动单体化建模功能&…

字符设备驱动模块的编译

一. 简介 本文继上一篇文章的学习&#xff0c;上一篇文章学习了字符设备驱动框架的初步编写。文章地址如下&#xff1a; 字符设备驱动框架的编写-CSDN博客 本文对上一篇编写的驱动模块初步框架进行编译。 二. 字符设备驱动模块的编译 上一篇文章&#xff0c;编写了字符设备…

Kubernetes 的用法和解析 -- 2

一.集群常用指令 1.1 基础控制指令 # 查看对应资源: 状态 $ kubectl get <SOURCE_NAME> -n <NAMESPACE> -o wide [rootkube-master ~]# kubectl get pods -n kuboard -o wide# 查看对应资源: 事件信息 $ kubectl describe <SOURCE_NAME> <SOURCE_NAME_R…

Linux:符号和符号表

文章目录 什么是符号&#xff1f;什么是符号表&#xff1f;全局符号和本地符号1. 全局符号&#xff1a;symtab符号表 2. 本地符号&#xff1a; 符号在汇编阶段符号在链接阶段1.由模块 m 定义并能被其他模块引用的全局符号。2.由其他模块定义并被模块 m 引用的全局符号。3.只被模…

如何实现一个 RPC 框架?

如果让你自己设计 RPC 框架你会如何设计&#xff1f; 一般情况下&#xff0c; RPC 框架不仅要提供服务发现功能&#xff0c;还要提供负载均衡、容错等功能&#xff0c;这样的 RPC 框架才算真正合格的。 为了便于小伙伴们理解&#xff0c;我们先从一个最简单的 RPC 框架使用示意…

深入理解网络 I/O:单 Selector 多线程|单线程模型

&#x1f52d; 嗨&#xff0c;您好 &#x1f44b; 我是 vnjohn&#xff0c;在互联网企业担任 Java 开发&#xff0c;CSDN 优质创作者 &#x1f4d6; 推荐专栏&#xff1a;Spring、MySQL、Nacos、Java&#xff0c;后续其他专栏会持续优化更新迭代 &#x1f332;文章所在专栏&…

【Android】在Android上使用mlKit构建人脸检测程序

在Android上构建人脸检测程序 目录 1、导入mlKit依赖包2、配置人脸检测器并且获取人脸检测器3、加载图片资源4、调用人脸检测器5、绘制矩形边框6、完整代码7、效果展示 1、导入mlKit依赖包 dependencies {// ...// Use this dependency to bundle the model with your appi…

肚子排气方法

1&#xff0c;保持30s的抱膝。 2&#xff0c;身体侧卧&#xff0c;打开髋和骨盆。停留20-30s。 3&#xff0c;脚后跟抬起&#xff0c;重心放在脚前掌&#xff0c;腹部贴大腿&#xff0c;双手左侧右侧来回转&#xff0c;10次。 4&#xff0c;吹风机&#xff0c;热风从脚开始打热…

uniGUI for Delphi UniSweetAlert控件详解

UniSweetAlert是UniGUI后期版本新增的一个界面友好的消息提示和输入控件&#xff0c;是ShowMessageN的升级版&#xff0c;UniSweetAlert增加了更多的可控制属性。 属性介绍 1、AlertType&#xff1a;提示类型&#xff0c;分为atError、atSuccess、atInfo、atQuestion、atWarni…