【深度学习目标检测】四、基于深度学习的抽烟识别(python,yolov8)

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。

YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。

YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。

此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。

在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。

总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。

本文介绍了基于Yolov8的抽烟检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

一、安装YoloV8

yolov8官方文档:https://docs.ultralytics.com/zh/

安装部分参考:官方安装教程

二、数据集准备

抽烟数据集共包含705个训练图片,78个验证图片,图片示例如下:

原始的数据格式为VOC格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:抽烟数据集yolov8格式

三、修改yolov8配置文件

1、修改数据集配置文件

将path替换成自己的数据集路径:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/smoke/pp_smoke-yolov8  # 更改为自己的数据集路径,建议绝对路ing
train: images/train 
val: images/val  
test: images/val  # Classes
names:0: smoke

2、配置模型文件

模型配置文件如下,将nc改成1:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令开始训练(将相关路径改成自己的路径,建议改成绝对路径):

yolo detect train project=deploy name=yolov8_smoke exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_smoke.yaml  data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

4、评估模型

使用如下命令评估:

yolo detect val imgsz=640 model=deploy/yolov8_smoke/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

精度如下:

5、推理

推理代码如下:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'smoke_a205.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

四、相关资料

本文在训练好的模型和推理代码:推理代码和权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/282572.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信号量机制理论详解专题

一文学懂信号量机制的各种大题,详细操作见下文~ 1965年,荷兰学者Dijkstra提出的信号量(Semaphores)机制是一种卓有成效的进程同步工具。在长期且广泛的应用中,信号量机制又得到了很大的发展,它从整型信号量…

网络基础(十一):VRRP原理与配置

目录 前言: 1、VRRP的基本概述 2、VRRP的基本原理 2.1VRRP的基本结构 2.2设备类型 2.3状态机 2.4VRRP路由器的抢占功能 2.5VRRP路由器的优先级 2.6VRRP工作原理 2.7主备路由器的工作内容 3、VRRP的基本配置 3.1配置主路由器和备用路由器 3.2配置PC1与P…

CMA、CNAS软件检测公司分享:压力测试应关注的指标和面临的问题

软件压力测试是容易被传统企业忽视的测试点,用户人数一旦超过预期,极易造成软件产品卡顿、崩溃的情况,不利于用户正常使用,严重影响企业公信力和盈利水平。今天卓码软件测评小编来聊聊压力测试过程中应该关注的指标和会面临的问题…

关联规则 FP-Growth算法

FP-Growth算法 FP-growth 算法思想 FP-growth算法是韩家炜老师在2000年提出的关联分析算法,它采取如下分治策略: 将提供频繁项集的数据库压缩到一棵频繁模式树 (FP-Tree)但仍保留项集关联信息。FP-growth算法是对Apriori方法的改进。生成一个频繁模式而不需要生成…

菜鸟学习日记(python)——匿名函数

Python 使用 lambda 来创建匿名函数。 lambda 函数是一种小型、匿名的内联函数,它可以具有任意数量的参数,但只能有一个表达式。 匿名函数的一般格式如下: lambda 参数列表:表达式 表达式用于计算并返回函数结果 lambda 函数通常用于编写…

version `GLIBC_2.29‘ not found 的原因和怎么解决问题

程序上经常有在这台Linux上编译,然后放到另一个Linux上运行的情况。 如果Linux版本差别不大或都是ubuntu或centos系列还好。 如果不是一个系列很容易出现GLIBC 找不到的情况。 尤其是ubuntu上编译,然后放到centos系列。因为centos为了追求所谓的稳定&…

Java小案例-RocketMQ的11种消息类型,你知道几种?(请求应答消息)

前言 Rocket的请求应答消息是指在使用Rocket(这里可能是RocketMQ或者Rocket框架)进行通信时,客户端发送一个请求到服务端,然后服务端处理该请求并返回一个响应的过程中的数据交换。 在RocketMQ中: 请求应答消息通常…

用Kotlin抓取微博数据并进行热度预测

闲来无事,逛逛微博,看着每条热度很高的博文趣事,心想能否通过爬虫抓取微博热度并进行趋势分析,说干就干,这里需要注意的问题我会一一标注。 爬虫ip信息的设置是在爬虫程序中进行的。爬虫ip信息可以帮助爬虫程序在访问…

python排序算法 直接插入排序法和折半插入排序法

最近需要使用到一些排序算法,今天主要使针对直接插入排序和折半插入排序进行讲解。 首先是直接插入排序,其排序过程主要是,针对A[a1,a2,a3,a4,a5....an],从排序的序列头部起始位置开始,将其也就是a1视为只有一个元素的…

DC电源模块的设计与制造技术创新

BOSHIDA DC电源模块的设计与制造技术创新 DC电源模块的设计与制造技术创新主要涉及以下几个方面: 1. 高效率设计:传统的DC电源模块存在能量转换损耗较大的问题,技术创新可通过采用高效率的电路拓扑结构、使用高性能的功率开关器件和优化控制…

网络基础(十二):ACL与NAT

目录 一、ACL 1、ACL的概述 2、ACL的分类 3、ACL的应用 4、ACL的组成和基本原理 ​编辑 5、ACL的配置 5.1配置基本ACL 5.2配置高级ACL 二、NAT 1、NAT的概述 2、NAT的分类 3、NAT的工作原理 4、静态NAT的配置 5、动态NAT的配置 6、NAPT(端口映射&am…

机器学习 | 机器学习基础知识

一、机器学习是什么 计算机从数据中学习规律并改善自身进行预测的过程。 二、数据集 1、最常用的公开数据集 2、结构化数据与非结构化数据 三、任务地图 1、分类任务 Classification 已知样本特征判断样本类别二分类、多分类、多标签分类 二分类:垃圾邮件分类、图像…