NBA得分数据可视化

简介

这是上学期的一些课外活动内容,将 NBA 得分数据进行可视化,并进行后续的探索性分析和建模(本文未介绍)。主要研究动机来源于这篇论文:

该论文使用二元的伽马过程来刻画 NBA 主客场得分数据,并且考虑了两者之间的相关性。该模型可以预测最终得分和两支队伍的总得分。并将预测结果应用到了下注市场(赌球?)。

小编有话说:这是一篇将随机过程(可靠性中的退化过程)应用到了其他领域(体育,篮球)的典型代表。并且发到了管理学不错的期刊(ABS 4星),这种思路非常值得学习!

本文主要实现下论文中的得分数据图。下面是该论文中的大量主客场球队的得分路径图。本文主要针对某一场比赛的两支队伍进行可视化。

来源于:K. Song and J. Shi (2020). "A gamma process based in-play prediction model for National Basketball Association games." European Journal of Operational Research 283(2): 706-713.

希望得到类似“腾讯体育”中的图形,如下所示:

案例教程

数据介绍

本文数据来自于该网站,需要对数据进行爬取。当然如果有合适的 R 包直接提供也是很不错的选择,体育相关 R 包可见: 。

这里以 2022 年 1 月 1 日的 印第安纳步行者洛杉矶快船 的比赛作为案例。首先,加载该数据:

data1 = read_excel("1月/01-01-202 Indiana Pacers VS Los Angeles Clippers.xls")
colnames(data1) = c("序号","时间","比分")

原始数据

数据包含三列,得分发生变化时,就会记录一条数据。该数据包含了 468 行。

数据预处理

接下来,对数据进行预处理。小编为了方便起见,写了一个简单的函数。

data_precess = function(data1,home = "Charlotte Hornets", away = "Brooklyn Nets"){# 将“比分”列中的“0-0”转换为两列数据new_data <- separate(data1, col = "比分", into = c("主队比分", "客队比分"), sep = "-")# 将“时间”列中的字符串转换为时间值new_data$时间 <- as.numeric(ms(new_data$时间))new_data$时间 <- max(new_data$时间) - new_data$时间 time_pr = time_process(new_data$时间)new_data$新时间 = time_pr$new_datnew_data$节次 <- factor(time_pr$index)new_data$主队比分 = as.numeric(new_data$主队比分)new_data$客队比分 = as.numeric(new_data$客队比分)return(data = new_data) 
}

运行下面代码,你将获得数据处理后的结果:

home = "Charlotte Hornets"
away = "Brooklyn Nets"
new_data = data_precess(data1, home = home, away = away)

主要思路就是把主客队的得分拆分成两列,并给出新的时间刻度和节次。

处理后的数据

数据可视化

处理完数据,就可以进行可视化了。代码比较简单,主要使用 geom_line() 添加两条折线,使用 geom_rect() 添加阴影部分来区分不同的节次。此外,添加一些细节调整。

new_data %>% ggplot(aes(x = 新时间)) +geom_rect(xmin = 0, xmax = 720, ymin = -Inf, ymax = Inf, fill = "#F7F7F7", alpha = 0.5) +geom_rect(xmin = 0+720*2, xmax = 3*720, ymin = -Inf, ymax = Inf, fill = "#F7F7F7", alpha = 0.5) +geom_line(aes(y = 主队比分, color = "Home")) +geom_line(aes(y = 客队比分, color = "Away")) +# facet_wrap(vars(节次)) +scale_x_continuous(expand = c(0,0),breaks = seq(0, 2160, 720)) +scale_y_continuous(expand = c(0,0)) +scale_color_manual(name = "队伍",values = c("Home" = "#DA2F20", "Away" = "#3E498D"),labels = c(home,away))+labs(x = "时间", y = "比分") +theme_bw() + theme(panel.grid = element_blank(),legend.position = c(0.13,0.9))

两支队伍的得分数据

小编有话说

  • 该图仅仅展示了两个队伍整场比赛的得分情况,更多探索分析还能进行,例如:计算最大分差,比分交替领先次数等。

  • 本文所提论文就是基于这样的得分数据,使用随机过程进行建模与预测。这是一个很不错的出发点,更多的统计知识应用到该数据中还需要我们进一步探索。

  • 如果读者们对这类体育数据感兴趣,欢迎一起交流合作!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/283027.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习算法---时间序列

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…

数据科学知识库

​ 我的博客是一个技术分享平台&#xff0c;涵盖了机器学习、数据可视化、大数据分析、数学统计学、推荐算法、Linux命令及环境搭建&#xff0c;以及Kafka、Flask、FastAPI、Docker等组件的使用教程。 在这个信息时代&#xff0c;数据已经成为了一种新的资源&#xff0c;而机…

【idea】解决sprintboot项目创建遇到的问题

目录 一、报错Plugin ‘org.springframework.boot:spring-boot-maven-plugin:‘ not found 二、报错java: 错误: 无效的源发行版&#xff1a;17 三、java: 无法访问org.springframework.web.bind.annotation.CrossOrigin 四、整合mybatis的时候&#xff0c;报java.lang.Ill…

WPF Icon矢量库 MahApps.Metro.IconPacks

文章目录 前言MahApps.Metro.IconPacksIconPacks.Browser简单使用简单使用案例代码Icon版本个人推荐 Icon自定义版权问题 前言 为了更快的进行开发&#xff0c;我找到了一个WPF的矢量图库。这样我们就不用去网上找别人的矢量库了 MahApps.Metro.IconPacks MahApps.Metro.Icon…

C++计算(a+b)*(c-b)的值 2023年9月c++一级 电子学会中小学生软件编程C++等级考试一级真题答案解析

目录 C计算(ab)*(c-b)的值 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C计算(ab)*(c-b)的值 2023年9月 C编程等级考试一级编程题 一、题目要求 1、编程实现 给定3个整数a、b、c&#xff0c;计算表达…

饥荒Mod 开发(十四):制作屏幕弹窗

饥荒Mod 开发(十三)&#xff1a;木牌传送 在上一个文章里面制作了一个传送选择页面&#xff0c;是一个全屏的窗口&#xff0c;那饥荒中如何制作一个全屏的窗口&#xff0c;下面介绍一下如何从零开始制作一个全屏窗口 制作屏幕窗口 饥荒中的全屏窗口都有一个基类 “Screen”,我…

Python面向对象编程之组合关系

python面向对象编程之组合 前面讲了面向类与对象的继承&#xff0c;知道了继承是一种什么“是”什么的关系。然而类与类之间还有另一种关系&#xff0c;这就是组合。 先来看两个例子&#xff1a; 先定义两个类&#xff0c;一个老师类&#xff0c;老师类有名字&#xff0c;年…

055:vue工具 --- 人民币小写转化为大写

第055个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

Python tkinter 初探Toplevel控件搭建父子窗口

目录 Toplevel控件搭建父子窗口 最简明的父子窗口框架 改进一&#xff1a;屏蔽和开放按钮 改进二&#xff1a;子窗口始终在主窗口之上 改进三&#xff1a;增加子窗口的关闭协议 改进四&#xff1a;使子窗口长获焦点 总结 Toplevel控件搭建父子窗口 最近&#xff0c;用P…

【PostgreSQL】从零开始:(十三)PostgreSQL-SQL语句操作架构(模式) Schema

Schema概述 PostgreSQL 数据库集群包含一个或多个命名数据库。角色和一些其他对象类型在整个集群中共享。与服务器的客户端连接只能访问单个数据库中的数据&#xff0c;该数据库在连接请求中指定。 用户不一定有权访问集群中的每个数据库。共享角色名称意味着不能在同一集群中…

【C++】POCO学习总结(十八):XML

【C】郭老二博文之&#xff1a;C目录 1、XML文件格式简介 1&#xff09;XML文件的开头一般都有个声明&#xff0c;声明是可选 <&#xff1f;xml version"1.0" encoding"UTF-8"?>2&#xff09;根元素&#xff1a;XML文件最外层的元素 3&#xff…

【C++】封装:练习案例-设计立方体类

练习案例&#xff1a;设计立方体类 设计立方体类(Cube) 求出立方体的面积和体积 分别用全局函数和成员函数判断两个立方体是否相等。 思路&#xff1a; 1&#xff09;创建立方体类 2&#xff09;设计属性 长&#xff0c;高&#xff0c;宽 3&#xff09;设计行为 获取立方…