6.s081操作系统Lab4: trap

文章目录

  • chapter 4
    • 概览
    • 4.1 CPU trap流程
      • 使用寄存器
      • 如果cpu想处理1个trap
    • 4.2 用户态引发的trap
      • 4.2.1 uservec
      • 4.2.2 usertrap
      • 4.2.3 usertrapret和userret
        • usertrapret
        • userret
  • Lab4
    • Backtrace (moderate)
    • Alarm (hard)

chapter 4

概览

  1. trap的场景:系统调用,设备中断,异常
  2. trap对用户是透明的,用户不会察觉发生了1个trap:内核会保存trap前的状态,在trap后恢复

4.1 CPU trap流程

使用寄存器

stvec: 保存trap程序地址
sepc: 临时保存pc寄存器,trap结束时,sret(TODO 不知道是什么,可能是一段程序)会重新将sepc复杂到pc中
scause: trap原因
sscratch: 方便上下文切换

  1. 见userret,sscratch寄存器保存用户页表的trapframe
  2. 见uservec,trapframe页可以用来暂存用户态的寄存器,中断后切换回来;同时保存内核页表在中断时从用户页表切换到内核页表,可以认为是个中介的临时仓库

sstatus: SPP表示从用户态(0)或从内核态(1)切换过来的trap;SIE表示是否启用设备中断

如果cpu想处理1个trap

trap相关:设置scause和sstatus,保存trap原因和来源
状态保存相关:把pc暂存到sepc
执行相关:切换到监督者模式,把stvec复制到pc
cpu不会切换内核页表,不会切换内核栈。但是必须切换pc。

4.2 用户态引发的trap

4.2.1 uservec

uservec就是用户态的trap入口,即cpu的stvec会被设成uservec。
这里要完成3个事:

  1. 保存用户态的32个寄存器
  2. 切换satp寄存器,使用内核页表
  3. 调用处理中断的函数usertrap

(倒叙,写用户进程开始执行前的事情,可参见4.2.3节usertrapret和userret的功能)
在进入用户空间之前,内核会分配1页TRAPFRAME,专门用来暂存trap发生时需要的东西,这个TRAPFRAME的地址放在sscratch寄存器中,TRAPFRAME页还会预先放着开始就已经知道且在trap发生时需要用到的东西:usertrap的地址(进行trap类型判断并调用相应处理函数)、cpu的hartid(TODO,还不知道作用,可能是CPU的id,可以记录处理trap的CPU)、内核页表地址(uservec需要进行用户态页表到内核态页表的切换)。

.globl uservec
uservec:    ## trap.c sets stvec to point here, so# traps from user space start here,# in supervisor mode, but with a# user page table.## sscratch points to where the process's p->trapframe is# mapped into user space, at TRAPFRAME.## swap a0 and sscratch# so that a0 is TRAPFRAMEcsrrw a0, sscratch, a0# save the user registers in TRAPFRAMEsd ra, 40(a0)sd sp, 48(a0)sd gp, 56(a0).............# save the user a0 in p->trapframe->a0csrr t0, sscratchsd t0, 112(a0)# restore kernel stack pointer from p->trapframe->kernel_spld sp, 8(a0)# make tp hold the current hartid, from p->trapframe->kernel_hartidld tp, 32(a0)# load the address of usertrap(), p->trapframe->kernel_trapld t0, 16(a0)# restore kernel page table from p->trapframe->kernel_satpld t1, 0(a0)csrw satp, t1sfence.vma zero, zero# a0 is no longer valid, since the kernel page# table does not specially map p->tf.# jump to usertrap(), which does not returnjr t0

4.2.2 usertrap

usertrap函数会处理来自用户态的中断、异常或系统调用,由uservec汇编代码调用;这里会判断trap的原因,以调用合适的处理函数。最后调用usertrapret()返回用户态。

//
// handle an interrupt, exception, or system call from user space.
// called from trampoline.S
//
void
usertrap(void)
{int which_dev = 0;if((r_sstatus() & SSTATUS_SPP) != 0)panic("usertrap: not from user mode");// send interrupts and exceptions to kerneltrap(),// since we're now in the kernel.w_stvec((uint64)kernelvec);struct proc *p = myproc();// save user program counter.p->trapframe->epc = r_sepc();if(r_scause() == 8){// system callif(p->killed)exit(-1);// sepc points to the ecall instruction,// but we want to return to the next instruction.p->trapframe->epc += 4;// an interrupt will change sstatus &c registers,// so don't enable until done with those registers.intr_on();syscall();} else if((which_dev = devintr()) != 0){// ok} else {printf("usertrap(): unexpected scause %p pid=%d\n", r_scause(), p->pid);printf("            sepc=%p stval=%p\n", r_sepc(), r_stval());p->killed = 1;}if(p->killed)exit(-1);// give up the CPU if this is a timer interrupt.if(which_dev == 2)yield();usertrapret();
}

4.2.3 usertrapret和userret

usertrapret

usertrapret:切换pc寄存器
userret:恢复寄存器,切换页表
usertrapret代码如下,

  1. 临时关闭中断功能:
    intr_off();将中断开关临时关闭(TODO:如何关闭),在从内核态到用户态的转换过程中,暂时停止中断功能,等切换完毕后再开启,可能是为了避免状态机紊乱。
  2. 改变 stvec 来引用 uservec:
    w_stvec(TRAMPOLINE + (uservec - trampoline));推测是重新写cpu的stvec寄存器为uservec地址,以保证下次中断时,cpu仍然跳转到uservec 去处理中断。
  3. 准备 uservec 所依赖的 trapframe 字段,如kernel_satp为内核页表地址等等。
  4. 写一些CPU寄存器:如设sstatus的SPP为0,表示为用户态的中断;设sstatus的SPIE为1,表示在用户态使能中断
  5. 将 sepc 设置为先前保存的用户程序计数器w_sepc(p->trapframe->epc);
  6. 调用 userret,并把TRAPFRAMEsatp作为参数传递过去,userret会切换用户态页表,重设用户态寄存器,最后切换回用户态
//
// return to user space
//
void
usertrapret(void)
{struct proc *p = myproc();// we're about to switch the destination of traps from// kerneltrap() to usertrap(), so turn off interrupts until// we're back in user space, where usertrap() is correct.intr_off();// send syscalls, interrupts, and exceptions to trampoline.Sw_stvec(TRAMPOLINE + (uservec - trampoline));// set up trapframe values that uservec will need when// the process next re-enters the kernel.p->trapframe->kernel_satp = r_satp();         // kernel page tablep->trapframe->kernel_sp = p->kstack + PGSIZE; // process's kernel stackp->trapframe->kernel_trap = (uint64)usertrap;p->trapframe->kernel_hartid = r_tp();         // hartid for cpuid()// set up the registers that trampoline.S's sret will use// to get to user space.// set S Previous Privilege mode to User.unsigned long x = r_sstatus();x &= ~SSTATUS_SPP; // clear SPP to 0 for user modex |= SSTATUS_SPIE; // enable interrupts in user modew_sstatus(x);// set S Exception Program Counter to the saved user pc.w_sepc(p->trapframe->epc);// tell trampoline.S the user page table to switch to.uint64 satp = MAKE_SATP(p->pagetable);// jump to trampoline.S at the top of memory, which // switches to the user page table, restores user registers,// and switches to user mode with sret.uint64 fn = TRAMPOLINE + (userret - trampoline);((void (*)(uint64,uint64))fn)(TRAPFRAME, satp);
}
userret
  1. 将 satp 切换到进程的用户页表,因为用户态和内核态的trampoline都是直接映射,因此在此时进行页表切换后,trampoline的程序仍能继续往下执行。此时a0寄存器指向用户页表的TRAPFRAME页,先将其保存到sscratch
.globl userret
userret:# userret(TRAPFRAME, pagetable)# switch from kernel to user.# usertrapret() calls here.# a0: TRAPFRAME, in user page table.# a1: user page table, for satp.# switch to the user page table.csrw satp, a1sfence.vma zero, zero# put the saved user a0 in sscratch, so we# can swap it with our a0 (TRAPFRAME) in the last step.ld t0, 112(a0)csrw sscratch, t0# restore all but a0 from TRAPFRAMEld ra, 40(a0)ld sp, 48(a0)ld gp, 56(a0)。。。。# restore user a0, and save TRAPFRAME in sscratchcsrrw a0, sscratch, a0# return to user mode and user pc.# usertrapret() set up sstatus and sepc.sret

Lab4

Backtrace (moderate)

实验内容:添加栈帧信息打印
考察点:xv6的栈结构;栈以类似链表的形式保存在1个页面中
关键提示:address lives at a fixed offset (-8) from the frame pointer of a stackframe, and that the saved frame pointer lives at fixed offset (-16) from the frame pointer.
在这里插入图片描述

关键代码:

void
backtrace(void)
{printf("backtrace:\n");uint64 fp = r_fp();uint64 down = PGROUNDDOWN(fp);uint64 up = PGROUNDUP(fp);while (fp >= down && fp < up){uint64* res_addr = (uint64*)(fp - 8);uint64* next_fp_addr = (uint64*)(fp - 16);printf("%p\n", *res_addr);fp = *next_fp_addr;}
}

Alarm (hard)

实验内容:实现系统调用,在进程使用CPU时间超时时,进行回调函数调用,并能正常返回用户态
考察点:系统调用流程;usertrap的寄存器保存位置在trapframe页面;usertrap的pc计数器存储在epc寄存器;
关键提示:

  • When a trap on the RISC-V returns to user space, what determines the instruction address at which user-space code resumes execution?
  • Your solution will require you to save and restore registers—what registers do you need to save and restore to resume the interrupted code correctly? (Hint: it will be many).

关键代码:

// kernel/sysproc.c
int
sys_sigreturn(void)
{memmove(myproc()->trapframe, myproc()->trapframe_back, sizeof(struct trapframe));myproc()->calling = 0;return 0;
}
//kernel/trap.c// give up the CPU if this is a timer interrupt.if(which_dev == 2){p->ticks_count ++;if (p->alarmInterval != -1 && p->ticks_count >= p->alarmInterval && p->calling != 1){// if a handler hasn't returned yet, the kernel shouldn't call it againp->calling = 1;//"re-arm" the alarm counter after each time it goes offp->ticks_count = 0;//save and restore registersmemmove(p->trapframe_back, p->trapframe, sizeof(struct trapframe));//Q:When a trap on the RISC-V returns to user space,//what determines the instruction address at which user-space code resumes execution?//A: epc!p->trapframe->epc = p->alarmHandler;}yield();}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/284915.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3-22-组件-插槽的使用详解

插槽是干啥的 插槽 就是 组件中的一个 占位符&#xff0c; 这个占位符 可以接收 父组件 传递过来的 html 的模板值&#xff0c;然后进行填充渲染。 就这么简单&#xff0c;插槽就是干这个的。要说它的优点吧&#xff0c;基本上就是可以使子组件的内容可以被父组件控制&#xf…

【️接口和抽象类的区别,如何选择?】

✅接口和抽象类的区别&#xff0c;如何选择&#xff1f; ✅ 接口和抽象类的区别✅方法定义✅修饰符✅构造器✅继承和实现✅单继承 、 多实现✅职责不同 ✅什么是模板方法模式&#xff0c;有哪些应用呢&#xff1f;✅典型理解✅示例&#x1f4a1;思考 ✅你在工作中是如何使用设计…

PythonStudio:国人开发的python窗体IDE,学生管理系统

国人开发的python窗体设计IDE&#xff0c;详情请看&#xff1a;PythonStudio&#xff1a;一款国人写的python及窗口开发编辑IDE&#xff0c;可以替代pyqt designer等设计器了-CSDN博客 这个软件作者还录制了入门的教程&#xff0c;跟着视频做&#xff0c;是个不错的python视频…

mysql使用全文索引+ngram全文解析器进行全文检索

表结构&#xff1a;表名 gamedb 主键 id 问题类型 type 问题 issue 答案 answer 需求 现在有个游戏资料库储存在mysql中&#xff0c;客户端进行搜索&#xff0c;需要对三个字段进行匹配&#xff0c;得到三个字段的相关性&#xff0c;选出三个字段中相关性最大的值进…

Python---进程

1. 进程的介绍 在Python程序中&#xff0c;想要实现多任务可以使用进程来完成&#xff0c;进程是实现多任务的一种方式。 2. 进程的概念 一个正在运行的程序或者软件就是一个进程&#xff0c;它是操作系统进行资源分配的基本单位&#xff0c;也就是说每启动一个进程&#xf…

第三十五周:文献阅读+Self-attention

目录 摘要 Abstract 文献阅读&#xff1a;基于LSTM和注意机制的水质预测 现有问题 提出方法 前提点 1. LSTM 2. 注意力机制 研究模型&#xff08;AT-LSTM&#xff09;结构 模型验证 总结AT-LSTM优于LSTM的方面 Self-attention&#xff08;自注意力机制&#xff09;…

机器学习——支持向量机

目录 一、基于最大间隔分隔数据 二、寻找最大间隔 1. 最大间隔 2. 拉格朗日乘子法 3. 对偶问题 三、SMO高效优化算法 四、软间隔 五、SMO算法实现 1. 简化版SMO算法 2. 完整版SMO算法 3. 可视化决策结果 六、核函数 1. 线性不可分——高维可分 2. 核函数 …

100GPTS计划-AI翻译TransLingoPro

地址 https://poe.com/TransLingoPro https://chat.openai.com/g/g-CfT8Otig6-translingo-pro 测试 输入: 我想吃中国菜。 预期翻译: I want to eat Chinese food. 输入: 请告诉我最近的医院在哪里。 预期翻译: Please tell me where the nearest hospital is. 输入: 明天…

React实现全局Loading

css #__loading {position:fixed;top: 0;left: 0;z-index: 99999;display: flex;align-items: center;justify-content: center;width: 100%;height: 100%;background: rgba(0, 0, 0, 0); } 页面代码 使用了antd的Spin组件 import React from react import ReactDOM from re…

举办知识竞赛活动的目的和意义

上世纪80年代以来&#xff0c;知识竞赛日益普及&#xff0c;已成为广大青年所喜爱的一项活动。“知识竞赛热”的出现不是偶然的&#xff0c;它是读书活动深入发展的结果&#xff0c;是广大青年求知成才的一个缩影。因此&#xff0c;如何组织好知识竞赛&#xff0c;是一个需要认…

LLaMA系列模型

1.LLama 1.1 简介 Open and Efficient Foundation Language Models (Open但没完全Open的LLaMA) 2023年2月&#xff0c;Meta&#xff08;原Facebook&#xff09;推出了LLaMA大模型&#xff0c;使用了1.4T token进行训练&#xff0c;虽然最大模型只有65B&#xff0c;但在相关评…

vs code调试.so文件

使用vs code调试.so文件 1 vs code中安装c的debug插件2 【重要】编写launch.json3 在.so的源码中打断点4 debug模式启动进程5 attach进程6 开始调试 .so是一种动态链接库&#xff0c;在大型项目以及跨语言项目中经常用到。在拿到.so文件对应的源码后进行debug呢&#xff1f; 简…