回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

目录

    • 回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

基本介绍

1.回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图) 。出图包括迭代曲线图、预测效果图等等。
2.matlab 版本要求2020b及以上版本 程序已调试好可以直接运行(数据直接在Excel中替换)优化参数为核参数。
3.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
4.附赠示例数据,直接运行main文件一键出图[灯泡]评价指标包括:R2、MAE、MSE、MAPE、RMSE等,图很多。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络数据回归预测模型 (多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/285231.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Xxl-job-admin 数据库使用DM8/达梦改造

Xxl-job 简介 XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。 XXL-JOB-ADMIN 是针对分布式定时任务管理的Web管理平台,默认使用的数据库是MySQL 8版本。 业务背景 在项目中使用分布式定时任务调度框架:xxl-…

Linux---Ubuntu软件卸载

1. 软件卸载的介绍 Ubuntu软件卸载有两种方式: 离线安装包的卸载(deb 文件格式卸载)在线安装包的卸载(apt-get 方式卸载) 2. deb 文件格式卸载 命令格式: sudo dpkg –r 安装包名 -r 选项表示安装的卸载 dpkg 卸载效果图: 3. apt-get 方式卸载 命令格式: …

mybatis.interceptor.exception.SqLValidateException:Ilegal SQL::......

现象:⬇️ 描述:执行 SQL 没问题,应用代码报错 ⬇️ .mybatis.interceptor.exception.SqLValidateException:Ilegal SQL::SELECT voucherNo FROM voucher ORDER BY CAST(SUBSTRING(voucherNo FROM LOCATE(_, voucherNo) 1) AS U…

门控网络简介

门控网络是一种循环神经网络 (RNN),它使用门来控制信息在时间步之间的流动。门是一种神经网络层,它可以选择性地允许或阻止信息通过。 门控网络的主要优点是它们可以解决传统 RNN 中存在的梯度消失问题。梯度消失是指随着时间步的增加,梯度会…

大模型(LLM)+词槽(slot)构建动态场景多轮对话系统

构建动态场景多轮对话系统 引言 在人工智能和自然语言处理领域,聊天机器人的开发一直是一个热点话题。近年来,随着大型语言模型(LLM)的进步,构建能够理解和响应各种用户需求的聊天机器人变得更加可行和强大。本文将介…

什么店生意好?C++采集美团商家信息做数据分析

最近遇到几个朋友,想要一起合伙投资一个实体店,不问类型,就看哪类产品相对比较受欢迎。抛除地址位置,租金的影响,我们之谈产品。因此,我熬了几个通宵,写了这么一段爬取美团商家商品信息的数据并…

Idea远程debugger调试

当我们服务部署在服务器上,我们想要像在本地一样debug,就可以使用idea自带的Remote JVM Debug 创建Remote JVM Debug服务器启动jar打断点进入断点 当我们服务部署在服务器上,我们想要像在本地一样debug,就可以使用idea自带的 Remote JVM Debug) 创建Rem…

AX7A200教程(9): ov5640摄像头输出显示720p视频

一,功能框图 ov5640摄像头视频通过ddr3缓存后,最后使用hdmi接口进行输出显示 二,摄像头硬件说明 2.1,像头硬件管脚 如下图所示,一共18个管脚 2.2,摄像头电源初始化时序 因这个ov5640摄像头是买的老摄像…

SQL语句整理二--Mysql

文章目录 知识点梳理:1. mysql 中 in 和 exists 区别2. varchar 与 char 的区别 查看表结构:获取当前时间:查看建表语句:修改用户密码:查看所有用户:grant命令:判断当前数据库有多少连接数&…

基于PaddleOCR一键搭建文字识别和身份证识别web api接口

前言 通过这篇文章【基于PaddleOCR的DBNet神经网络实现全网最快最准的身份证识别模型】开发的身份证识别模型,还无法进行部署应用,这篇文章就已经开发好的代码如何部署,并如何通过api的接口进行访问进行讲解。 项目部署 以windows系统为例&…

固件提取实战(附无损提取方案)

文章目录 1. 写在前面2. 设备介绍3. 固件提取4. 固件分析5. 固件提取改进6. 引脚接法 1. 写在前面 固件提取,对博主来讲一直带着一层神秘的面纱,归根结底还是因为博主之前对电路、硬件、嵌入式等等了解比较少(说白了就是菜鸡)。巧…

蓝桥杯嵌入式——KEY

CUBE里将这几个引脚配置成GPIO输入模式,再同时选中,配置成上拉,如下图: 同时配置定时器,定时10ms,每10ms扫描一次按键,计算公式:80 000 000 / 80 / 10000 100HZ 10ms,配…