python图像二值化处理

目录

1、双峰法

2、P参数法

3、迭代法

4、OTSU法


图像的二值化处理是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。二值化是图像分割的一种最简单的方法,可以把灰度图像转换成二值图像。具体实现是将大于某个临界灰度值的像素灰度设为灰度极大值,把小于这个值的像素灰度设为灰度极小值,从而实现二值化。

根据阈值选取的不同,二值化的算法分为固定阈值和自适应阈值。常见的二值化方法有双峰法、P参数法、迭代法和OTSU法等。其中,双峰法是通过寻找直方图上的两个最高峰,将阈值选取在两个峰之间的最低处;P参数法是根据图像的直方图分布情况,动态地确定一个阈值;迭代法是通过多次迭代计算,逐渐逼近最佳的阈值;OTSU法则是通过最大化类间方差来确定最佳阈值。

1、双峰法

双峰法是一种简单的二值化处理方法,其基本思想是找到图像直方图中的两个最大值,并将阈值设定在这两个峰值之间的最低处。这种方法适用于背景和前景差异较大的图像。

import cv2
import numpy as np
def find_peaks(hist):# 找到直方图中的峰值peaks = []for i in range(1, len(hist) - 1):if hist[i] > hist[i - 1] and hist[i] > hist[i + 1]:peaks.append(i)# 返回前两个峰值(如果存在)if len(peaks) >= 2:return peaks[0], peaks[1]else:return None, None
# 读取图像并转换为灰度图像
image = cv2.imread(r'1.jpg', cv2.IMREAD_GRAYSCALE)
​
# 计算图像的直方图
hist, bins = np.histogram(image.ravel(), 256, [0, 256])
​
# 找到直方图中的两个峰值
peak1, peak2 = find_peaks(hist)
​
# 计算阈值,取两个峰值的平均值作为阈值
threshold = int((peak1 + peak2) / 2)
​
# 对图像进行二值化处理
binary_image = cv2.threshold(image, threshold, 255, cv2.THRESH_BINARY)[1]
​
# 显示二值化后的图像
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、P参数法

P参数法是一种图像二值化处理方法,用于将灰度图像转换为二值图像。它基于图像的局部信息进行操作,具体步骤如下:

  1. 选择一个合适的阈值T(0 ≤ T ≤ 255)作为全局阈值。

  2. 对于图像中的每个像素点,计算其周围邻域内像素的均值和标准差。如果该像素的灰度值大于等于均值加上参数P乘以标准差,则将其设置为白色(255),否则设置为黑色(0)。

import cv2
import numpy as np
​
def p_thresholding(image, P):# 将图片转换为灰度图像gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
​# 获取图像大小height, width = gray_image.shape
​# 初始化输出二值图像binary_image = np.zeros((height, width), np.uint8)
​for i in range(height):for j in range(width):# 计算像素的周围邻域内像素的均值和标准差neighborhood_mean = np.mean(gray_image[max(0, i-1):min(height, i+2), max(0, j-1):min(width, j+2)])neighborhood_std = np.std(gray_image[max(0, i-1):min(height, i+2), max(0, j-1):min(width, j+2)])
​# 根据P参数法判断像素的二值化结果if gray_image[i, j] >= neighborhood_mean + P * neighborhood_std:binary_image[i, j] = 255else:binary_image[i, j] = 0
​return binary_image
​
# 读取图像
image = cv2.imread(r'q.jpg')
​
# 设置参数P的值
P = 0.2
​
# 调用P参数法二值化函数
binary_image = p_thresholding(image, P)
​
# 显示原始图像和二值图像
cv2.imshow('Original Image', image)
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
​

3、迭代法

基本原理很简单:

(1)选择灰度图的平均值作为初始阈值T0 ;

(2)计算小于等于T0的平均值T1, 和大于T0的平均值T2;

(3)新的阈值为T = (T1 + T2)/ 2;

(4)比较T和T0,若相等,则返回T,即为迭代阈值; 否则 T0 = T,重复(1)-(3)

import cv2
​
def iterative_thresholding(image, threshold=127):# 初始化二值化结果binary_image = image.copy()
​# 迭代更新阈值prev_threshold = 0while threshold != prev_threshold:prev_threshold = threshold
​# 计算两个区域的平均灰度值region1_mean = image[image <= threshold].mean()region2_mean = image[image > threshold].mean()
​# 更新阈值threshold = (region1_mean + region2_mean) // 2
​# 根据新的阈值进行二值化binary_image[image <= threshold] = 0binary_image[image > threshold] = 255
​return binary_image
​
# 读取图像
image = cv2.imread(r'C:\Users\Downloads\q.jpg')
​
# 调用迭代法二值化函数
binary_image = iterative_thresholding(image)
​
# 显示结果
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

4、OTSU法

最大类间方差是由日本学者大津(Nobuyuki Otsu)于1979年提出,是一种确定图像二值化分割阈值的算法。算法假设图像像素能够根据全局阈值,被分成背景[background]和目标[objects]两部分。然后,计算该最佳阈值来区分这两类像素,使得两类像素区分度最大。

从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大。它被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响,因此在数字图像处理上得到了广泛的应用。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。

import cv2
​
# 读取图像并转换为灰度图像
image = cv2.imread(r'q.jpg', cv2.IMREAD_GRAYSCALE)
​
# 使用OTSU法计算最佳阈值
ret, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 显示二值化后的图像
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/285352.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

八.创建和管理表

目录 1. 基础知识1.1 一条数据存储的过程1.2 标识符命名规则1.3 MySQL中的数据类型 2. 创建和管理数据库2.2 使用数据库2.3 修改数据库 3. 创建表3.1 创建方式13.2 创建方式23.4 查看数据表结构 4. 修改表4.1 追加一个列4.2 修改一个列4.3 重命名一个列4.4 删除一个列 5. 重命名…

Python学习之复习MySQL-Day8(事务)

目录 文章声明⭐⭐⭐让我们开始今天的学习吧&#xff01;事务简介事务操作模拟转账操作开启事务提交事务回滚事务查看/设置事务提交方法实例演示 事务四大特性并发事务问题分类 事务隔离级别分类查看/设置事务隔离级别实例演示 文章声明⭐⭐⭐ 该文章为我&#xff08;有编程语…

Mongodb复制集架构

目录 复制集架构 复制集优点 复制集模式 复制集搭建 复制集常用命令 复制集增删节点 复制集选举 复制集同步 oplog分析 什么是oplog 查看oplog oplog大小 复制集架构 复制集优点 数据复制: 数据在Primary节点上进行写入&#xff0c;然后异步地复制到Secondary节点&a…

Axure交互样式,交互事件,交互动作,情形基本介绍及使用,完成ERP的菜单跳转到各个页面的跳转案例,省市联动案例,下拉刷新案例

目录 一.Axure交互样式 二.交互事件 三.情形 四.交互动作 五. 完成ERP的菜单跳转到各个页面的跳转 ​编辑 五. 省市联动 ​六.下拉刷新 一.Axure交互样式 鼠标悬停;鼠标按下;选中;禁用;获取焦点; 悬停就是鼠标放上去时&#xff0c;按下是鼠标左键单击&#xff0c;选中是…

Unity中URP下的顶点偏移

文章目录 前言一、实现思路二、实现URP下的顶点偏移1、在顶点着色器中使用正弦函数&#xff0c;实现左右摇摆的效果2、在正弦函数的传入参数中&#xff0c;加入一个扰度值&#xff0c;实现不规则的顶点偏移3、修改正弦函数的振幅 A&#xff0c;让我们的偏移程度合适4、修改正弦…

mysql中的server_id到底有什么用?详解mysql配置中的server_id配置项

当我们搭建MySQL集群时&#xff0c;自然需要完成数据库的主从同步来保证数据一致性。而主从同步的方式也分很多种&#xff0c;一主多从、链式主从、多主多从&#xff0c;根据你的需要来进行设置。但只要你需要主从同步&#xff0c;就一定要注意server-id的配置&#xff0c;否则…

HTML有哪些列表以及具体的使用!!!

文章目录 HTML列表1、无序列表2、有序列表3、自定义列表 HTML列表 html的列表有三种&#xff0c;一种是无序列表&#xff0c;一种是有序列表&#xff0c;还有一种为自定义列表。 1、无序列表 <ul> <li>无序列表&#xff1a;无序列表基础版 主要使用<ul>标…

vue使用xlsx和xlsx-style导出xlsx文件并修改样式

1.下载依赖 npm install xlsx --save npm install file-saver --save npm install xlsx-style --save2.先修改xlsx-style的源码&#xff0c;一旦引入xlsx-style则会报错 在\node_modules\xlsx-style\dist\cpexcel.js 807行 的 var cpt require(’./cpt’ ‘able’); 改成 v…

翻译: LLMs新的工作流程和新的机会 New workflows and new opportunities

生成人工智能正以多种方式引领着不仅仅是成本节约&#xff0c;更是收入增长。但是&#xff0c;就像生成人工智能这样的通用技术创造价值的方式有很多&#xff0c;谈论这些方式是很多的。但在这个视频中&#xff0c;我想看看一些我看到的新兴的&#xff0c;或者更常见的走向这种…

BearPi Std 板从入门到放弃 - 先天神魂篇(9)(RT-Thread DAC->ADC)

简介 RT-Thread DAC->ADC 使用, 就是DAC1输出模拟量, ADC1 读取模拟量转化成电压值, 基于开发板 &#xff1a; Bearpi Std(小熊派标准板)主芯片: STM32L431RCT6串口: Usart1DAC1: PA5, OUT2ADC1: PC2, IN3将板子上的E53 接口, 5 和 6用排线相连, 即实现内部DAC1->ADC1 …

Leetcode—859.亲密字符串【简单】

2023每日刷题&#xff08;六十三&#xff09; Leetcode—859.亲密字符串 &#x1f4a9;山实现代码 class Solution { public:bool buddyStrings(string s, string goal) {int len1 s.size(), len2 goal.size();int cnt 0;int flag 0;int flag2 0;int odd -1;int a[26] …

react基于antd二次封装spin组件

目录 react基于antd二次封装spin组件组件使用组件效果 react基于antd二次封装spin组件 组件 import { Spin } from antd; import propTypes from "prop-types"; import React from react; import styleId from "styled-components"; // 使用 父div必须加…