智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.算术优化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用算术优化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.算术优化算法

算术优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/119785544
算术优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

算术优化算法参数如下:

%% 设定算术优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明算术优化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/287033.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【lesson18】MySQL内置函数(1)日期函数和字符串函数

文章目录 日期函数函数使用具体使用案例建表插入数据建表插入数据 字符串函数函数使用具体使用案例建表插入数据测试 日期函数 函数使用 获得年月日: 获得时分秒: 获得时间戳: 获得现在的时间: 在日期的基础上加日期&#xf…

el-form与el-upload结合上传带附件的表单数据(后端篇)

1.写在之前 本文采用Spring Boot MinIO MySQLMybatis Plus技术栈,参考ruoyi-vue-pro项目。 前端实现请看本篇文章el-form与el-upload结合上传带附件的表单数据(前端篇)-CSDN博客。 2.需求描述 在OA办公系统中,流程表单申请人…

selenium-grid4.3.0两种模式记录

selenium-grid4.3.0两种模式记录 本文运行,需要提前配置好Java11以及安装好Chrom、Firefox、Safari其中一个浏览器,如果是Chrom、Firefox需要下载对应版本的驱动,并给 webdriver 配置环境变量,Safari浏览器Mac系统会自带&#xf…

element plus 日期范围 自定义内容

问题: 按照官网上的自定义内容示例,修改日期选择器没有问题,如果修改日期范围选择器,修改后会丢失日期范围选择时的样式。 解决: 从F12中不难看出日期范围的选择样式来自于.el-date-table-cell 而示例中写的是.cell&…

Linux学习笔记-Ubuntu下ssh服务器连接异常Connection reset

文章目录 一、问题问题现象1.1 连接重置无法访问的的问题1.2 查看服务器连接状态1.3 使用调试模式查看的信息 二、临时解决方法三、从根源解决问题3.1 问题分析3.2 服务器的ssh日志3.3 修改ssh配置禁止root登录3.4 配置允许所有ip访问3.5 修改认证方法3.6 再找原因 角色&#x…

从零开始制作一个Douban图像下载器:Wt库的基础知识和操作指南

引言 欢迎来到本文,如果你希望从豆瓣下载海量的高清图像、学习使用现代C web应用程序框架Wt库开发web应用程序,或者了解如何利用代理IP和多线程技术提高爬虫效率和稳定性,那么你来对地方了。在接下来的内容中,我们将为你提供一个…

Unity | Shader基础知识(第七集:案例<让图片和外部颜色叠加显示>)

目录 一、本节介绍 1 上集回顾 2 本节介绍 二、添加图片资源 三、 常用cg数据类型 1 float 2 bool 3 sampler 四、加入图片资源 五、使用图片资源 1 在通道里加入资源 2 使用图片和颜色叠加 2.1 2D纹理采样tex2D 2.2 组合颜色 六、全部代码 七、下集介绍 相关…

phpstudy是什么?

PHPStudy 是一个集成环境工具,它将 PHP 开发所需的软件,如 Apache(Web服务器)、MySQL(数据库服务器)、PHP(脚本语言)等打包在一起,以便用户能够轻松安装和配置这些软件&a…

模拟组建网络的过程

DNS是域名系统,作用是将域名解析成ip地址 要求 1.使用172.16.0.0网段组建网络 2.使用3台pc,可以配置DHCP服务自动分配ip 3.添加两个网站服务器 第一台是www.taobao.com 第二台www.jd.com 他们可以通过DNS服务器为客户解析域名 172开头的是B类ip地…

智能优化算法应用:基于类电磁机制算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于类电磁机制算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于类电磁机制算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.类电磁机制算法4.实验参数设定5.算法…

鸿蒙系统(HarmonyOS)之方舟框架(ArkUI)介绍

鸿蒙开发官网:HarmonyOS应用开发官网 - 华为HarmonyOS打造全场景新服务 方舟开发框架(简称:ArkUI),是一套构建HarmonyOS应用界面的UI开发框架,它提供了极简的UI语法与包括UI组件、动画机制、事件交互等在内…

NLP论文阅读记录 - AAAI 23 | 02 SUMREN:总结有关新闻事件的报道演讲

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.相关工作2.1新闻摘要2.2 以查询为中心的摘要2.3 新闻归因 三.本文方法3.1 SumREN 基准3.1.1基准建设3.1.2 统计3.1.3 银牌训练数据生成 3.2 Models3.2.1以查询为中心的摘要基线3.2.2 基于管道…