spark介绍及简单使用

简介

        Spark是由加州大学伯克利分校AMPLab(AMP实验室)开发的开源大数据处理框架。起初,Hadoop MapReduce是大数据处理的主流框架,但其存在一些限制,如不适合迭代算法、高延迟等。为了解决这些问题,Spark在2010年推出,提供了高效的内存计算和更灵活的数据处理方式。

使用场景:

        批处理:

        Spark支持大规模的批处理任务,通过弹性的分布式计算能力,能够处理海量数据。

        交互式查询:

         Spark提供了Spark SQL,使得用户能够使用SQL语言进行交互式查询,方便数据分析师和数据科学家进行数据探索。

        流处理:

         Spark Streaming模块允许实时处理数据,支持复杂的流处理应用。

        机器学习:

         MLlib是Spark的机器学习库,支持分布式机器学习,适用于大规模数据集的训练和预测。

        图处理:

         GraphX是Spark的图处理库,用于处理图数据结构,支持图算法的并行计算。

        技术竞品:

        Hadoop MapReduce:Spark的前身,仍然是大数据领域的主流框架之一,但相对而言,Spark更灵活、性能更好。

        Apache Flink: 与Spar一个流处理和批处理框架,强调事件时间处理和精确一次性语义。

        Apache Storm: 专注于实时流处理,适用于需要低延迟的应用场景。

        Apache HBase: 针对NoSQL存储,适用于需要实时读写的大数据场景。

优劣势:

        Spark的优势:

        高性能: Spark的内存计算引擎可以显著提高计算速度,特别适用于迭代算法和复杂的数据处理任务。

        易用性: 提供了丰富的API,包括Java、Scala、Python和R等,使得开发者能够使用熟悉的编程语言进行大数据处理。

        统一的处理框架: Spark支持批处理、交互式查询、流处理、机器学习和图处理等多种数据处理模式,为用户提供了统一的编程接口。

        生态系统: Spark生态系统包括Spark SQL、MLlib、GraphX等库,丰富的生态系统支持广泛的数据处理应用。

ec433488fc544c4fa7b488592d7c1188.png

        Spark的劣势:

        资源消耗: 由于使用内存计算,Spark对内存的需求较大,需要足够的硬件资源支持。

        学习曲线: 对于初学者而言,学习Spark可能需要一定的时间,尤其是对于复杂的数据处理任务。

        实时性: 尽管Spark Streaming支持实时处理,但相较于专注于实时处理的框架,实时性可能稍逊一筹。

在选择大数据处理框架时,需要考虑具体的业务需求和场景,综合考虑各个框架的优劣势来做出合适的选择。

spark的shell使用

        本文在hadoop for spark 集群环境下进行演示,当你启动集群的所有工作程序包括spark程序在内,可以使用spark-shell指令在任意一个节点进入到spark交互命令行中

        spark-shell 后置参数解释

- -I <file>:预加载<file>,强制逐行解释。- --master MASTER_URL:指定Spark的主节点URL,可以是spark://host:port, mesos://host:port, yarn, k8s://https://host:port, 或者 local。- --deploy-mode DEPLOY_MODE:指定驱动程序的部署模式,可以是本地("client")或者集群中的工作节点("cluster")。- --class CLASS_NAME:指定应用程序的主类(适用于Java / Scala应用程序)。- --name NAME:指定应用程序的名称。- --jars JARS:指定要包含在驱动程序和执行器类路径中的jar文件,用逗号分隔。- --packages:指定要包含在驱动程序和执行器类路径中的maven坐标的jar文件,用逗号分隔。- --exclude-packages:指定在解析--packages提供的依赖项时要排除的groupId:artifactId,用逗号分隔。- --repositories:指定要搜索--packages给出的maven坐标的额外远程仓库,用逗号分隔。- --py-files PY_FILES:指定要放在PYTHONPATH上的.zip, .egg, 或 .py文件,用逗号分隔。- --files FILES:指定要放在每个执行器的工作目录中的文件,用逗号分隔。- --archives ARCHIVES:指定要解压到每个执行器的工作目录中的归档文件,用逗号分隔。- --conf, -c PROP=VALUE:指定Spark的配置属性。- --properties-file FILE:指定要从中加载额外属性的文件路径。- --driver-memory MEM:指定驱动程序的内存(例如1000M, 2G)。- --driver-java-options:指定要传递给驱动程序的额外Java选项。- --driver-library-path:指定要传递给驱动程序的额外库路径。- --driver-class-path:指定要传递给驱动程序的额外类路径。- --executor-memory MEM:指定每个执行器的内存(例如1000M, 2G)。- --proxy-user NAME:指定提交应用程序时要模拟的用户。- --help, -h:显示帮助信息并退出。- --verbose, -v:打印额外的调试输出。- --version:打印当前Spark的版本。

        进入spark交互页面,这里有三个方法进入spark的交互环境,不同的语言环境,其提示符也有所不同。

##默认scala语言环境
spark-shell --master local##使用python语言环境
pyspark##使用R语言环境
sparkR

12f7f9399d904b7a951928296cd6bedc.png

spark-shell中的使用范例 

        在/home/hadoop 目录下创建一个wordcount.txt,文件内容如下。

        821a814c6bda466c815ee276eaed7851.png

spark-shell进入scala交互页面

读取文件内容、统计内容行数、取首行数据。


scala> val textFile = sc.textFile("file:///home/hadoop/wordcount.txt")
textFile: org.apache.spark.rdd.RDD[String] = file:///home/hadoop/wordcount.txt MapPartitionsRDD[1] at textFile at <console>:23scala> textFile.count()
res0: Long = 3                                                                  scala> textFile.first()
res1: String = hello you

         scala在使用方法上还是和java有几分类似。在linux的交互行上,也可以实现像idea上的联想功能

scala> val textFile = sc.textFile("file:///home/hadoop/wordcount.txt")
textFile: org.apache.spark.rdd.RDD[String] = file:///home/hadoop/wordcount.txt MapPartitionsRDD[3] at textFile at <console>:23scala> textFile.
++                         countApprox             getCheckpointFile    mapPartitionsWithEvaluator   reduce             toDebugString                
aggregate                  countApproxDistinct     getNumPartitions     mapPartitionsWithIndex       repartition        toJavaRDD                    
barrier                    countAsync              getResourceProfile   max                          sample             toLocalIterator              
cache                      countByValue            getStorageLevel      min                          saveAsObjectFile   toString                     
canEqual                   countByValueApprox      glom                 name                         saveAsTextFile     top                          
cartesian                  dependencies            groupBy              partitioner                  setName            treeAggregate                
checkpoint                 distinct                id                   partitions                   sortBy             treeReduce                   
cleanShuffleDependencies   filter                  intersection         persist                      sparkContext       union                        
coalesce                   first                   isCheckpointed       pipe                         subtract           unpersist                    
collect                    flatMap                 isEmpty              preferredLocations           take               withResources                
collectAsync               fold                    iterator             productArity                 takeAsync          zip                          
compute                    foreach                 keyBy                productElement               takeOrdered        zipPartitions                
context                    foreachAsync            localCheckpoint      productIterator              takeSample         zipPartitionsWithEvaluator   
copy                       foreachPartition        map                  productPrefix                toDF               zipWithIndex                 
count                      foreachPartitionAsync   mapPartitions        randomSplit                  toDS               zipWithUniqueId   

        定义好一个参数的路径时,可以使用TAB键进行联想,后面就会弹出可使用的相关函数。函数的命令及其功能,在博主看来甚至和SQL相似,只是使用方法上不同。

Spark在ideal中的使用

        通过idea创建一个maven项目

 

编辑pom.xml增加spark相关依赖

<dependencies><!-- Spark Core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.1.2</version></dependency><!-- Spark SQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.1.2</version></dependency><!-- Spark Streaming --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.1.2</version></dependency><!-- Spark MLib --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-mllib_2.12</artifactId><version>3.1.2</version></dependency><!-- Spark GraphX --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-graphx_2.12</artifactId><version>3.1.2</version></dependency></dependencies>

点击右侧mven进行刷新 

 新建项目文件目录

         这里简单理解,第一个是存放代码的资源目录,第二个是存放配置文件。第三第四是测试类的,这里创建为第一个 

         在java目录下创建一个java class

创建类名,第一个要大写

 创建远程运行环境

点击远程开发

        

新建一个SSH链接

这里需要保证远程服务器的防火墙等相关配置关闭的。

  点击检查链接并继续,然后进入创建的java class 中进行编写代码

这里需要安装一个spakr插件,可以使代码能在服务器上运行

 spark的RDD简单应用

        写一个单词统计的代码,做为简单的。

在src/main路径下创建一个wordcount.txt文件,并键入以下内容        

hello you
hello he
hello me

创建一个WordCount 名称的class         

package sql;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;import java.util.Arrays;
import java.util.Iterator;
import java.util.List;public class WordCount {public static void main(String[] args) throws Exception{
//        配置 Spark 应用:
//这里创建了一个 SparkConf 对象,设置了应用名为 "WordCount",并且指定在本地模式下运行,使用一个本地线程。SparkConf sparkConf = new SparkConf().setAppName("WordCount").setMaster("local[1]");//使用 SparkConf 创建了 JavaSparkContext 对象,该对象是 Spark 的 Java API 入口点。JavaSparkContext sc = new JavaSparkContext(sparkConf);//        从文本文件中读取数据,并创建一个包含每行文本的 RDD。JavaRDD<String> linesRDD = sc.textFile("src/main/wordcount.txt");//使用 flatMap 转换操作,将每行文本切分为单词,形成一个包含所有单词的 RDD。JavaRDD<String> wordsRDD = linesRDD.flatMap(new FlatMapFunction<String, String>() {@Overridepublic Iterator<String> call(String line) throws Exception {String[] words = line.split(" ");List<String> list = Arrays.asList(words);return list.iterator();}});//使用 mapToPair 转换操作,将每个单词映射为键值对,其中键是单词,值是1。JavaPairRDD<String, Integer> pairsRDD = wordsRDD.mapToPair(new PairFunction<String, String, Integer>() {@Overridepublic Tuple2<String, Integer> call(String word) throws Exception {System.out.println("正在处理的单词是:" + word);return new Tuple2<>(word, 1);}});
//使用 reduceByKey 转换操作,对相同键的值进行累加,实现单词频次的统计。JavaPairRDD<String, Integer> retRDD = pairsRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {@Overridepublic Integer call(Integer v1, Integer v2) throws Exception {return v1 + v2;}});//使用 foreach 操作,遍历统计结果并打印每个单词及其频次。retRDD.foreach(new VoidFunction<Tuple2<String, Integer>>() {@Overridepublic void call(Tuple2<String, Integer> tuple2) throws Exception {System.out.println(tuple2);}});sc.stop();}}

        通过以上在spark 的java代码可以看出,使用java写程序时一件相当繁琐的事情。后面会主要一pyspark给大家spark的应用。

        注:这里在运行后会出现很多红色高亮信息,这些并不影响程序的正常运行 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/287277.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

统计分析绘图软件 GraphPad Prism 10 mac功能介绍

GraphPad Prism mac是一款专业的统计和绘图软件&#xff0c;主要用于生物医学研究、实验设计和数据分析。 GraphPad Prism mac功能和特点 数据导入和整理&#xff1a;GraphPad Prism 可以导入各种数据格式&#xff0c;并提供直观的界面用于整理、编辑和管理数据。用户可以轻松地…

我的4096创作纪念日

机缘 岁月如梭&#xff0c;时光一晃已经在CSDN扎根4096天了。第一次注册CSDN好像还是在2012年&#xff0c;那会还没大学毕业。初入CSDN&#xff0c;只是把他当作自己编程时遇到问题的在线笔记记录而已&#xff0c;没想到无意间还帮助了其他遇到同样问题困扰的同学。而在这4096…

RabbitMQ 高级

1.发送者的可靠性 首先&#xff0c;我们一起分析一下消息丢失的可能性有哪些。消息从发送者发送消息&#xff0c;到消费者处理消息&#xff0c;需要经过的流程是这样的&#xff1a; 消息从生产者到消费者的每一步都可能导致消息丢失&#xff1a; 发送消息时丢失&#xff1a; 生…

C/C++编程中的算法实现技巧与案例分析

C/C编程语言因其高效、灵活和底层的特性&#xff0c;被广大开发者用于实现各种复杂算法。本文将通过10个具体的算法案例&#xff0c;详细探讨C/C在算法实现中的技巧和应用。 一、冒泡排序&#xff08;Bubble Sort&#xff09; 冒泡排序&#xff08;Bubble Sort&#xff09;是一…

数据智慧:如何利用可视化提升效率

数据可视化是一项强大的工具&#xff0c;能够显著提高工作效率和决策的准确性。下面我就以可视化从业者的角度&#xff0c;简单谈谈数据可视化是如何助力效率提升的。 直观理解复杂数据 数据可视化将抽象的数据转化为图表、图形或仪表盘&#xff0c;使数据更易于理解。这种直观…

智能优化算法应用:基于学生心理学算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于学生心理学算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于学生心理学算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.学生心理学算法4.实验参数设定5.算法…

WPF——样式和控件模板、数据绑定与校验转换

样式和控件模板 合并资源字典 Style简单样式的定义和使用 ControlTemplate控件模板的定义和使用 定义 使用 Trigger触发器 数据绑定与校验转换 数据绑定的设置 代码层实现绑定

蜘点云原生之 KubeSphere 落地实践过程

作者&#xff1a;池晓东&#xff0c;蜘点商业网络服务有限公司技术总监&#xff0c;从事软件开发设计 10 多年&#xff0c;喜欢研究各类新技术&#xff0c;分享技术。 来源&#xff1a;本文由 11 月 25 日广州站 meetup 中讲师池晓东整理&#xff0c;整理于该活动中池老师所分享…

python实现简单选择排序法

对于排序的方法中&#xff0c;简单选择排序法是相对符合人类的思维的一种方式&#xff0c;对于简单选择排序方法的核心思想是&#xff1a; 从待排序的序列集合中&#xff0c;找到最大值或者是最小值&#xff0c;然后将该值放置在其在最终的排序序列中的位置&#xff0c;也就是…

Vue的脚手架

脚手架配置 脚手架文档&#xff1a;Vue CLI npm config set registry https://registry.npm.taobao.org vue.config.js配置选项&#xff1a; 配置参考 | Vue CLI ref选项 ref和id类似&#xff0c;给标签打标识。 document.getElementById(btn); this.$ref.btn; 父子组…

SpringBlade export-user SQL 注入漏洞复现

0x01 产品简介 SpringBlade 是一个由商业级项目升级优化而来的 SpringCloud 分布式微服务架构、SpringBoot 单体式微服务架构并存的综合型项目。 0x02 漏洞概述 SpringBlade v3.2.0 及之前版本框架后台 export-user 路径存在安全漏洞,攻击者利用该漏洞可通过组件customSqlS…

持续集成交付CICD:K8S 通过模板文件自动化完成前端项目应用发布

目录 一、实验 1.环境 2.GitLab 更新deployment文件 3.GitLab更新共享库前端项目CI与CD流水线 4.K8S查看前端项目版本 5.Jenkins 构建前端项目 6.Jenkins 再次构建前端项目 二、问题 1. Jenkins 构建CI 流水线报错 2. Jenkins 构建CI 流水线弹出脚本报错 3. Jenkins…