Hive概述

Hive

一 Hive基本概念

1 Hive简介

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6Qk6YjlB-1689679768822)(/img/hive.jpg)]

学习目标
- 了解什么是Hive
- 了解为什么使用Hive

####1.1 什么是 Hive

  • Hive 由 Facebook 实现并开源,是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能,底层数据是存储在 HDFS 上。
  • Hive 本质: 将 SQL 语句转换为 MapReduce 任务运行,使不熟悉 MapReduce 的用户很方便地利用 HQL 处理和计算 HDFS 上的结构化的数据,是一款基于 HDFS 的 MapReduce 计算框架
  • 主要用途:用来做离线数据分析,比直接用 MapReduce 开发效率更高。

1.2 为什么使用 Hive

  • 直接使用 Hadoop MapReduce 处理数据所面临的问题:

    • 人员学习成本太高
    • MapReduce 实现复杂查询逻辑开发难度太大
  • 使用 Hive

    • 操作接口采用类 SQL 语法,提供快速开发的能力

    • 避免了去写 MapReduce,减少开发人员的学习成本

    • 功能扩展很方便

2 Hive 架构

2.1 Hive 架构图

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uWZCWY4W-1689679768823)(/img/hive2.jpg)]

2.2 Hive 组件

  • 用户接口:包括 CLI、JDBC/ODBC、WebGUI。
    • CLI(command line interface)为 shell 命令行
    • JDBC/ODBC 是 Hive 的 JAVA 实现,与传统数据库JDBC 类似
    • WebGUI 是通过浏览器访问 Hive。
    • HiveServer2基于Thrift, 允许远程客户端使用多种编程语言如Java、Python向Hive提交请求
  • 元数据存储:通常是存储在关系数据库如 mysql/derby 中。
    • Hive 将元数据存储在数据库中。
    • Hive 中的元数据包括
      • 表的名字
      • 表的列
      • 分区及其属性
      • 表的属性(是否为外部表等)
      • 表的数据所在目录等。
  • 解释器、编译器、优化器、执行器:完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后由 MapReduce 调用执行

2.3 Hive 与 Hadoop 的关系

Hive 利用 HDFS 存储数据,利用 MapReduce 查询分析数据。

Hive是数据仓库工具,没有集群的概念,如果想提交Hive作业只需要在当前电脑上装Hive就可以了

3 Hive 与传统数据库对比

  • hive 用于海量数据的离线数据分析。
Hive关系型数据库
ANSI SQL 不完全支持 支持
更新 INSERT OVERWRITE\INTO TABLE(默认) UPDATE\INSERT\DELETE
事务 不支持(默认) 支持
模式 读模式 写模式
查询语言 HQL SQL
数据存储 HDFS Raw Device or Local FS
执行 MapReduce Executor
执行延迟
子查询 只能用在From子句中 完全支持
处理数据规模
可扩展性
索引 0.8版本后加入位图索引 有复杂的索引
  • hive支持的数据类型
    • 原子数据类型
      • TINYINT SMALLINT INT BIGINT BOOLEAN FLOAT DOUBLE STRING BINARY TIMESTAMP DECIMAL CHAR VARCHAR DATE
    • 复杂数据类型
      • ARRAY
      • MAP
      • STRUCT
  • hive中表的类型
    • 托管表 (managed table) (内部表)
    • 外部表

4 Hive 数据模型

  • Hive 中所有的数据都存储在 HDFS 中,没有专门的数据存储格式
  • 在创建表时指定数据中的分隔符,Hive 就可以映射成功,解析数据。
  • Hive 中包含以下数据模型:
    • db:在 hdfs 中表现为 hive.metastore.warehouse.dir 目录下一个文件夹
    • table:在 hdfs 中表现所属 db 目录下一个文件夹
    • external table:数据存放位置可以在 HDFS 任意指定路径
    • partition:在 hdfs 中表现为 table 目录下的子目录
    • bucket:在 hdfs 中表现为同一个表目录下根据 hash 散列之后的多个文件

5 Hive 安装部署

  • Hive 安装前需要安装好 JDK 和 Hadoop。配置好环境变量。

  • 下载Hive的安装包 http://archive.cloudera.com/cdh5/cdh/5/ 并解压

     tar -zxvf hive-1.1.0-cdh5.7.0.tar.gz  -C ~/app/
    
  • 进入到 解压后的hive目录 找到 conf目录, 修改配置文件

    cp hive-env.sh.template hive-env.sh
    vi hive-env.sh
    

    在hive-env.sh中指定hadoop的路径

    HADOOP_HOME=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0
    
  • 配置环境变量

    • vi ~/.bash_profile
      
    • export HIVE_HOME=/home/hadoop/app/hive-1.1.0-cdh5.7.0
      export PATH=$HIVE_HOME/bin:$PATH
      
    • source ~/.bash_profile
      
  • 根据元数据存储的介质不同,分为下面两个版本,其中 derby 属于内嵌模式。实际生产环境中则使用 mysql 来进行元数据的存储。

    • 内置 derby 版:
      bin/hive 启动即可使用
      缺点:不同路径启动 hive,每一个 hive 拥有一套自己的元数据,无法共享

    • mysql 版:

      • 上传 mysql驱动到 hive安装目录的lib目录下

        mysql-connector-java-5.*.jar

      • vi conf/hive-site.xml 配置 Mysql 元数据库信息(MySql安装见文档)

        <?xml version="1.0" encoding="UTF-8" standalone="no"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
        <configuration>
        <!-- 插入以下代码 --><property><name>javax.jdo.option.ConnectionUserName</name><value>root</value><!-- 指定mysql用户名 --></property><property><name>javax.jdo.option.ConnectionPassword</name><value>root!123A</value><!-- 指定mysql密码 --></property><property><name>javax.jdo.option.ConnectionURL</name>mysql<value>jdbc:mysql://127.0.0.1:3306/hive</value></property><!-- 指定mysql数据库地址 --><property><name>javax.jdo.option.ConnectionDriverName</name><value>com.mysql.jdbc.Driver</value><!-- 指定mysql驱动 --></property><!-- 到此结束代码 --><property><name>hive.exec.script.wrapper</name><value/><description/></property>
        </configuration>

二 Hive 基本操作

2.1 Hive HQL操作初体验

  • 创建数据库

    CREATE DATABASE test;
    
  • 显示所有数据库

    SHOW DATABASES;
    
  • 创建表

    CREATE TABLE student(classNo string, stuNo string, score int) row format delimited fields terminated by ',';
    
    • row format delimited fields terminated by ‘,’ 指定了字段的分隔符为逗号,所以load数据的时候,load的文本也要为逗号,否则加载后为NULL。hive只支持单个字符的分隔符,hive默认的分隔符是\001
  • 将数据load到表中

    • 在本地文件系统创建一个如下的文本文件:/home/hadoop/tmp/student.txt

      C01,N0101,82
      C01,N0102,59
      C01,N0103,65
      C02,N0201,81
      C02,N0202,82
      C02,N0203,79
      C03,N0301,56
      C03,N0302,92
      C03,N0306,72
      
    • load data local inpath '/home/hadoop/tmp/student.txt'overwrite into table student;
      
    • 这个命令将student.txt文件复制到hive的warehouse目录中,这个目录由hive.metastore.warehouse.dir配置项设置,默认值为/user/hive/warehouse。Overwrite选项将导致Hive事先删除student目录下所有的文件, 并将文件内容映射到表中。
      Hive不会对student.txt做任何格式处理,因为Hive本身并不强调数据的存储格式。

  • 查询表中的数据 跟SQL类似

    hive>select * from student;
    
  • 分组查询group by和统计 count

    hive>select classNo,count(score) from student where score>=60 group by classNo;
    

    从执行结果可以看出 hive把查询的结果变成了MapReduce作业通过hadoop执行

2.2 Hive的内部表和外部表

内部表(managed table)外部表(external table)
概念 创建表时无external修饰 创建表时被external修饰
数据管理 由Hive自身管理 由HDFS管理
数据保存位置 hive.metastore.warehouse.dir (默认:/user/hive/warehouse) hdfs中任意位置
删除时影响 直接删除元数据(metadata)及存储数据 仅会删除元数据,HDFS上的文件并不会被删除
表结构修改时影响 修改会将修改直接同步给元数据 表结构和分区进行修改,则需要修复(MSCK REPAIR TABLE table_name;)
  • 案例

    • 创建一个外部表student2
    CREATE EXTERNAL TABLE student2 (classNo string, stuNo string, score int) row format delimited fields terminated by ',' location '/tmp/student';
    
    • 装载数据

      load data local inpath '/home/hadoop/tmp/student.txt' overwrite into table student2;
      
  • 显示表信息

    desc formatted table_name;
    
  • 删除表查看结果

    drop table student;
    
  • 再次创建外部表 student2

  • 不插入数据直接查询查看结果

    select * from student2;
    

2.3 分区表

  • 什么是分区表

    • 随着表的不断增大,对于新纪录的增加,查找,删除等(DML)的维护也更加困难。对于数据库中的超大型表,可以通过把它的数据分成若干个小表,从而简化数据库的管理活动,对于每一个简化后的小表,我们称为一个单个的分区。
    • hive中分区表实际就是对应hdfs文件系统上独立的文件夹,该文件夹内的文件是该分区所有数据文件。
    • 分区可以理解为分类,通过分类把不同类型的数据放到不同的目录下。
    • 分类的标准就是分区字段,可以一个,也可以多个。
    • 分区表的意义在于优化查询。查询时尽量利用分区字段。如果不使用分区字段,就会全部扫描。
  • 创建分区表

    tom,4300
    jerry,12000
    mike,13000
    jake,11000
    rob,10000
    
    create table employee (name string,salary bigint) partitioned by (date1 string) row format delimited fields terminated by ',' lines terminated by '\n' stored as textfile;
    
  • 查看表的分区

    show partitions employee;
    
  • 添加分区

    alter table employee add if not exists partition(date1='2018-12-01');
    
  • 加载数据到分区

    load data local inpath '/home/hadoop/tmp/employee.txt' into table employee partition(date1='2018-12-01');
    
  • 如果重复加载同名文件,不会报错,会自动创建一个*_copy_1.txt

  • 外部分区表即使有分区的目录结构, 也必须要通过hql添加分区, 才能看到相应的数据

    hadoop fs -mkdir /user/hive/warehouse/emp/dt=2018-12-04
    hadoop fs -copyFromLocal /tmp/employee.txt /user/hive/warehouse/test.db/emp/dt=2018-12-04/employee.txt
    
    • 此时查看表中数据发现数据并没有变化, 需要通过hql添加分区

      alter table emp add if not exists partition(dt='2018-12-04');
      
    • 此时再次查看才能看到新加入的数据

  • 总结

    • 利用分区表方式减少查询时需要扫描的数据量
      • 分区字段不是表中的列, 数据文件中没有对应的列
      • 分区仅仅是一个目录名
      • 查看数据时, hive会自动添加分区列
      • 支持多级分区, 多级子目录

2.4 动态分区

  • 在写入数据时自动创建分区(包括目录结构)

  • 创建表

    create table employee2 (name string,salary bigint) partitioned by (date1 string) row format delimited fields terminated by ',' lines terminated by '\n' stored as textfile;
    
  • 导入数据

    insert into table employee2 partition(date1) select name,salary,date1 from employee;
    
  • 使用动态分区需要设置参数

    set hive.exec.dynamic.partition.mode=nonstrict;
    

三 Hive 函数

3.1 内置运算符

在 Hive 有四种类型的运算符:

  • 关系运算符

  • 算术运算符

  • 逻辑运算符

  • 复杂运算

    (内容较多,见《Hive 官方文档》》)

3.2 内置函数

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

  • 简单函数: 日期函数 字符串函数 类型转换
  • 统计函数: sum avg distinct
  • 集合函数
  • 分析函数
  • show functions; 显示所有函数
  • desc function 函数名;
  • desc function extended 函数名;

3.3 Hive 自定义函数和 Transform

  • UDF

    • 当 Hive 提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF:user-defined function)。

    • TRANSFORM,and UDF and UDAF

      it is possible to plug in your own custom mappers and reducers

      A UDF is basically only a transformation done by a mapper meaning that each row should be mapped to exactly one row. A UDAF on the other hand allows us to transform a group of rows into one or more rows, meaning that we can reduce the number of input rows to a single output row by some custom aggregation.

      UDF:就是做一个mapper,对每一条输入数据,映射为一条输出数据。

      UDAF:就是一个reducer,把一组输入数据映射为一条(或多条)输出数据。

      一个脚本至于是做mapper还是做reducer,又或者是做udf还是做udaf,取决于我们把它放在什么样的hive操作符中。放在select中的基本就是udf,放在distribute by和cluster by中的就是reducer。

      We can control if the script is run in a mapper or reducer step by the way we formulate our HiveQL query.

      The statements DISTRIBUTE BY and CLUSTER BY allow us to indicate that we want to actually perform an aggregation.

      User-Defined Functions (UDFs) for transformations and even aggregations which are therefore called User-Defined Aggregation Functions (UDAFs)

  • UDF示例(运行java已经编写好的UDF)

    • 在hdfs中创建 /user/hive/lib目录

      hadoop fs -mkdir /user/hive/lib
      
    • 把 hive目录下 lib/hive-contrib-hive-contrib-1.1.0-cdh5.7.0.jar 放到hdfs中

      hadoop fs -put hive-contrib-1.1.0-cdh5.7.0.jar /user/hive/lib/
      
    • 把集群中jar包的位置添加到hive中

      hive> add jar hdfs:///user/hive/lib/hive-contrib-1.1.0-cdh5.7.0.jar;
      
    • 在hive中创建临时UDF

      hive> CREATE TEMPORARY FUNCTION row_sequence as 'org.apache.hadoop.hive.contrib.udf.UDFRowSequence'
      
    • 在之前的案例中使用临时自定义函数(函数功能: 添加自增长的行号)

      Select row_sequence(),* from employee;
      
    • 创建非临时自定义函数

      CREATE FUNCTION row_sequence as 'org.apache.hadoop.hive.contrib.udf.UDFRowSequence' using jar 'hdfs:///user/hive/lib/hive-contrib-1.1.0-cdh5.7.0.jar';
      
  • Python UDF

    • 准备案例环境

      • xxxxxxxxxx USE test;SELECT TRANSFORM(id, vtype, price) USING ‘udaf.sh’ AS (vtype STRING, mean FLOAT, var FLOAT) FROM (SELECT * FROM foo CLUSTER BY vtype) AS TEMP_TABLE;sql

        CREATE table u(fname STRING,lname STRING);
        
      • 向表中插入数据

        insert into table u values('George','washington');
        insert into table u values('George','bush');
        insert into table u values('Bill','clinton');
        insert into table u values('Bill','gates');
        
    • 编写map风格脚本

      import sys
      for line in sys.stdin:line = line.strip()fname , lname = line.split('\t')l_name = lname.upper()print '\t'.join([fname, str(l_name)])
      
    • 通过hdfs向hive中ADD file

      • 加载文件到hdfs

        hadoop fs -put udf.py /user/hive/lib/
        
      • hive从hdfs中加载python脚本

        ADD FILE hdfs:///user/hive/lib/udf.py;
        
    • Transform

      SELECT TRANSFORM(fname, lname) USING 'udf.py' AS (fname, l_name) FROM u;SELECT TRANSFORM(fname, lname) USING 'python2.7 udf1.py' AS (fname, l_name) FROM u;
      
  • Python UDAF

四 hive综合案例

  • 内容推荐数据处理

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-88O55xwU-1689679768824)(/img/hive3.png)]

    • 需求
      • 根据用户行为以及文章标签筛选出用户最感兴趣(阅读最多)的标签
  • 相关数据

    ​ user_id article_id event_time

    11,101,2018-12-01 06:01:10
    22,102,2018-12-01 07:28:12
    33,103,2018-12-01 07:50:14
    11,104,2018-12-01 09:08:12
    22,103,2018-12-01 13:37:12
    33,102,2018-12-02 07:09:12
    11,101,2018-12-02 18:42:12
    35,105,2018-12-03 09:21:12
    22,104,2018-12-03 16:42:12
    77,103,2018-12-03 18:31:12
    99,102,2018-12-04 00:04:12
    33,101,2018-12-04 19:10:12
    11,101,2018-12-05 09:07:12
    35,102,2018-12-05 11:00:12
    22,103,2018-12-05 12:11:12
    77,104,2018-12-05 18:02:02
    99,105,2018-12-05 20:09:11
    • 文章数据
    artical_id,artical_url,artical_keywords
    101,http://www.itcast.cn/1.html,kw8|kw1
    102,http://www.itcast.cn/2.html,kw6|kw3
    103,http://www.itcast.cn/3.html,kw7
    104,http://www.itcast.cn/4.html,kw5|kw1|kw4|kw9
    105,http://www.itcast.cn/5.html,
    
  • 数据上传hdfs

    hadoop fs -mkdir /tmp/demo
    hadoop fs -mkdir /tmp/demo/user_action
    
  • 创建外部表

    • 用户行为表
    drop table if exists user_actions;
    CREATE EXTERNAL TABLE user_actions(user_id STRING,article_id STRING,time_stamp STRING
    )
    ROW FORMAT delimited fields terminated by ','
    LOCATION '/tmp/demo/user_action';
    
    • 文章表
    drop table if exists articles;
    CREATE EXTERNAL TABLE articles(article_id STRING,url STRING,key_words array<STRING>
    )
    ROW FORMAT delimited fields terminated by ',' 
    COLLECTION ITEMS terminated BY '|' 
    LOCATION '/tmp/demo/article_keywords';
    /*
    key_words array<STRING>  数组的数据类型
    COLLECTION ITEMS terminated BY '|'  数组的元素之间用'|'分割
    */
    
    • 查看数据
    select * from user_actions;
    select * from articles;
    
    • 分组查询每个用户的浏览记录

      • collect_set/collect_list作用:
        • 将group by中的某列转为一个数组返回
        • collect_list不去重而collect_set去重
      • collect_set
      select user_id,collect_set(article_id) 
      from user_actions group by user_id;
      
      11      ["101","104"]
      22      ["102","103","104"]
      33      ["103","102","101"]
      35      ["105","102"]
      77      ["103","104"]
      99      ["102","105"]
      
      • collect_list
      select user_id,collect_list(article_id) 
      from user_actions group by user_id;
      
      11      ["101","104","101","101"]
      22      ["102","103","104","103"]
      33      ["103","102","101"]
      35      ["105","102"]
      77      ["103","104"]
      99      ["102","105"]
      • sort_array: 对数组排序
      select user_id,sort_array(collect_list(article_id)) as contents 
      from user_actions group by user_id;
      
      11      ["101","101","101","104"]
      22      ["102","103","103","104"]
      33      ["101","102","103"]
      35      ["102","105"]
      77      ["103","104"]
      99      ["102","105"]
      
    • 查看每一篇文章的关键字 lateral view explode

      • explode函数 将array 拆分
      select explode(key_words) from articles;
      
      • lateral view 和 explode 配合使用,将一行数据拆分成多行数据,在此基础上可以对拆分的数据进行聚合
      select article_id,kw from articles lateral view explode(key_words) t as kw;
      
      101     kw8
      101     kw1
      102     kw6
      102     kw3
      103     kw7
      104     kw5
      104     kw1
      104     kw4
      104     kw9
      
      select article_id,kw from articles lateral view outer explode(key_words) t as kw;
      
      101     kw8
      101     kw1
      102     kw6
      102     kw3
      103     kw7
      104     kw5
      104     kw1
      104     kw4
      104     kw9
      105     NULL
      #含有outer
      
    • 根据文章id找到用户查看文章的关键字

      • 原始数据
      101     http://www.itcast.cn/1.html     ["kw8","kw1"]
      102     http://www.itcast.cn/2.html     ["kw6","kw3"]
      103     http://www.itcast.cn/3.html     ["kw7"]
      104     http://www.itcast.cn/4.html     ["kw5","kw1","kw4","kw9"]
      105     http://www.itcast.cn/5.html     []
      
      select a.user_id, b.kw from user_actions 
      as a left outer JOIN (select article_id,kw from articles
      lateral view outer explode(key_words) t as kw) b
      on (a.article_id = b.article_id)
      order by a.user_id;
      
      11      kw1
      11      kw8
      11      kw5
      11      kw1
      11      kw4
      11      kw1
      11      kw9
      11      kw8
      11      kw1
      11      kw8
      22      kw1
      22      kw7
      22      kw9
      22      kw4
      22      kw5
      22      kw7
      22      kw3
      22      kw6
      33      kw8
      33      kw1
      33      kw3
      33      kw6
      33      kw7
      35      NULL
      35      kw6
      35      kw3
      77      kw9
      77      kw1
      77      kw7
      77      kw4
      77      kw5
      99      kw3
      99      kw6
      99      NULL
      
    • 根据文章id找到用户查看文章的关键字并统计频率

      select a.user_id, b.kw,count(1) as weight 
      from user_actions as a 
      left outer JOIN (select article_id,kw from articles
      lateral view outer explode(key_words) t as kw) b
      on (a.article_id = b.article_id)
      group by a.user_id,b.kw 
      order by a.user_id,weight desc;
      
      11      kw1     4
      11      kw8     3
      11      kw5     1
      11      kw9     1
      11      kw4     1
      22      kw7     2
      22      kw9     1
      22      kw1     1
      22      kw3     1
      22      kw4     1
      22      kw5     1
      22      kw6     1
      33      kw3     1
      33      kw8     1
      33      kw7     1
      33      kw6     1
      33      kw1     1
      35      NULL    1
      35      kw3     1
      35      kw6     1
      77      kw1     1
      77      kw4     1
      77      kw5     1
      77      kw7     1
      77      kw9     1
      99      NULL    1
      99      kw3     1
      99      kw6     1
      
    • CONCAT:
      CONCAT(str1,str2,…)

      返回结果为连接参数产生的字符串。如有任何一个参数为NULL ,则返回值为 NULL。

      select concat(user_id,article_id) from user_actions;
      

      CONCAT_WS:

      使用语法为:CONCAT_WS(separator,str1,str2,…)

      CONCAT_WS() 代表 CONCAT With Separator ,是CONCAT()的特殊形式。第一个参数是其它参数的分隔符。分隔符的位置放在要连接的两个字符串之间。分隔符可以是一个字符串,也可以是其它参数。如果分隔符为 NULL,则结果为 NULL。

      select concat_ws(':',user_id,article_id) from user_actions;
      
    • 将用户查看的关键字和频率合并成 key:value形式

      select a.user_id, concat_ws(':',b.kw,cast (count(1) as string)) as kw_w 
      from user_actions as a 
      left outer JOIN (select article_id,kw from articles
      lateral view outer explode(key_words) t as kw) b
      on (a.article_id = b.article_id)
      group by a.user_id,b.kw;
      
      11      kw1:4
      11      kw4:1
      11      kw5:1
      11      kw8:3
      11      kw9:1
      22      kw1:1
      22      kw3:1
      22      kw4:1
      22      kw5:1
      22      kw6:1
      22      kw7:2
      22      kw9:1
      33      kw1:1
      33      kw3:1
      33      kw6:1
      33      kw7:1
      33      kw8:1
      35      1
      35      kw3:1
      35      kw6:1
      77      kw1:1
      77      kw4:1
      77      kw5:1
      77      kw7:1
      77      kw9:1
      99      1
      99      kw3:1
      99      kw6:1
      
    • 将用户查看的关键字和频率合并成 key:value形式并按用户聚合

      select cc.user_id,concat_ws(',',collect_set(cc.kw_w))
      from(
      select a.user_id, concat_ws(':',b.kw,cast (count(1) as string)) as kw_w 
      from user_actions as a 
      left outer JOIN (select article_id,kw from articles
      lateral view outer explode(key_words) t as kw) b
      on (a.article_id = b.article_id)
      group by a.user_id,b.kw
      ) as cc 
      group by cc.user_id;
      
      11      kw1:4,kw4:1,kw5:1,kw8:3,kw9:1
      22      kw1:1,kw3:1,kw4:1,kw5:1,kw6:1,kw7:2,kw9:1
      33      kw1:1,kw3:1,kw6:1,kw7:1,kw8:1
      35      1,kw3:1,kw6:1
      77      kw1:1,kw4:1,kw5:1,kw7:1,kw9:1
      99      1,kw3:1,kw6:1
      
    • 将上面聚合结果转换成map

      select cc.user_id,str_to_map(concat_ws(',',collect_set(cc.kw_w))) as wm
      from(
      select a.user_id, concat_ws(':',b.kw,cast (count(1) as string)) as kw_w 
      from user_actions as a 
      left outer JOIN (select article_id,kw from articles
      lateral view outer explode(key_words) t as kw) b
      on (a.article_id = b.article_id)
      group by a.user_id,b.kw
      ) as cc 
      group by cc.user_id;
      
      11      {"kw1":"4","kw4":"1","kw5":"1","kw8":"3","kw9":"1"}
      22      {"kw1":"1","kw3":"1","kw4":"1","kw5":"1","kw6":"1","kw7":"2","kw9":"1"}
      33      {"kw1":"1","kw3":"1","kw6":"1","kw7":"1","kw8":"1"}
      35      {"1":null,"kw3":"1","kw6":"1"}
      77      {"kw1":"1","kw4":"1","kw5":"1","kw7":"1","kw9":"1"}
      99      {"1":null,"kw3":"1","kw6":"1"}
      
    • 将用户的阅读偏好结果保存到表中

      create table user_kws as 
      select cc.user_id,str_to_map(concat_ws(',',collect_set(cc.kw_w))) as wm
      from(
      select a.user_id, concat_ws(':',b.kw,cast (count(1) as string)) as kw_w 
      from user_actions as a 
      left outer JOIN (select article_id,kw from articles
      lateral view outer explode(key_words) t as kw) b
      on (a.article_id = b.article_id)
      group by a.user_id,b.kw
      ) as cc 
      group by cc.user_id;
      
    • 从表中通过key查询map中的值

      select user_id, wm['kw1'] from user_kws;
      
      11      4
      22      1
      33      1
      35      NULL
      77      1
      99      NULL
      
    • 从表中获取map中所有的key 和 所有的value

      select user_id,map_keys(wm),map_values(wm) from user_kws;
      
      11      ["kw1","kw4","kw5","kw8","kw9"] ["4","1","1","3","1"]
      22      ["kw1","kw3","kw4","kw5","kw6","kw7","kw9"]     ["1","1","1","1","1","2","1"]
      33      ["kw1","kw3","kw6","kw7","kw8"] ["1","1","1","1","1"]
      35      ["1","kw3","kw6"]       [null,"1","1"]
      77      ["kw1","kw4","kw5","kw7","kw9"] ["1","1","1","1","1"]
      99      ["1","kw3","kw6"]       [null,"1","1"]
      
    • 用lateral view explode把map中的数据转换成多列

      select user_id,keyword,weight from user_kws lateral view explode(wm) t as keyword,weight;
      
      11      kw1     4
      11      kw4     1
      11      kw5     1
      11      kw8     3
      11      kw9     1
      22      kw1     1
      22      kw3     1
      22      kw4     1
      22      kw5     1
      22      kw6     1
      22      kw7     2
      22      kw9     1
      33      kw1     1
      33      kw3     1
      33      kw6     1
      33      kw7     1
      33      kw8     1
      35      1       NULL
      35      kw3     1
      35      kw6     1
      77      kw1     1
      77      kw4     1
      77      kw5     1
      77      kw7     1
      77      kw9     1
      99      1       NULL
      99      kw3     1
      99      kw6     1
      

五 Sqoop

5.1 Sqoop概述

  • 什么是Sqoop

    • Sqoop 是一款进行数据传输的工具, 可在hadoop 的 hdfs 和关系型数据库之间传输数据
    • 可以使用Sqoop把数据从MySQL 或 Oracle导入到hdfs中, 也可以把数据从hdfs导入到MySQL或Oracle中
    • Sqoop可自动执行数据传输的大部分过程, 使用MapReduce导入和导出数据,提供并行操作和容错
  • 为什么要使用sqoop?

    • 快速实现Hadoop(HDFS/hive/hbase)与mysql/Oracle等关系型数据库之间的数据传递
    • Sqoop提供多种数据传输方式
  • Sqoop原理

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uBPSZOQj-1689679768825)(/img/sqoop.png)]

5.2 Sqoop安装

  • 下载安装包url

  • 解压到centos中

    tar -zxvf /home/hadoop/software/sqoop-1.4.6-cdh5.7.0.tar.gz  -C ~/app/
    
  • 配置环境变量

    vi ~/.bash_profile
    export SQOOP_HOME=/home/hadoop/app/sqoop-1.4.6-cdh5.7.0
    export PATH=$SQOOP_HOME/bin:$PATH
    
  • 激活环境变量

    source ~/.bash_profile
    
  • 到 $SQOOP_HOME/conf 目录下 配置sqoop_env.sh

    cp sqoop-env-template.sh sqoop-env.sh
    vi sqoop-env.sh
    #在sqoop_env.sh中
    export HADOOP_COMMON_HOME=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/
    export HADOOP_MAPRED_HOME=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/
    export HIVE_HOME=/home/hadoop/app/hive-1.1.0-cdh5.7.0/
    
  • 拷贝 mysql驱动到$SQOOP_HOME/lib目录下

    cp /home/hadoop/app/hive-1.1.0-cdh5.7.0/lib/mysql-connector-java-5.1.47.jar /home/hadoop/app/sqoop-1.4.6-cdh5.7.0/lib/
    
  • 测试sqoop环境

    sqoop-version
    

    看到如下输出 说明sqoop安装成功

    Sqoop 1.4.6-cdh5.7.0
    git commit id
    Compiled by jenkins on ******
    

5.3 使用Sqoop导入数据到hdfs中

  • 准备mysql数据

    建表语句

    CREATE table u(id int PRIMARY KEY AUTO_INCREMENT,fname varchar(20),lname varchar(20));
    

    插入数据

    insert into u3 (fname, lname) values('George','washington');
    insert into u3 (fname, lname) values('George','bush');
    insert into u3 (fname, lname) values('Bill','clinton');
    insert into u3 (fname, lname) values('Bill','gates');
    
  • Sqoop导入命令介绍

    • 命令语法: sqoop import (控制参数) (导入参数)
    • 命令元素: 导入操作, 数据源, 访问方式, 导入控制, 目标地址
    • 命令理解: 数据从哪里来, 有什么控制, 到哪里去
    sqoop import --connect jdbc:mysql://127.0.0.1:3306/test --username root --password root\!123A --table u -m 1
    
    • 添加–target-dir 指定hdfs上数据存放的目录
    sqoop import --connect jdbc:mysql://localhost:3306/test --username root --password root!123A --table u --target-dir /tmp/u1 -m 1
    
  • 导入可能出现的问题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p8Dk0UGU-1689679768826)(/img/error.png)]

​ 解决 上传java-json.jar到$SQOOP_HOME/lib目录下

  • 默认数据上传到hdfs中如下路径

    /user/当前linux用户名/mysql表名/
    
  • 通过hive 建立外表导入数据到hive

    CREATE EXTERNAL TABLE u4(id INT,fname STRING,lname STRING
    )
    ROW FORMAT delimited fields terminated by ',' 
    LOCATION '/user/hadoop/u/';
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/28843.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python实现HBA混合蝙蝠智能算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法&#xff0c;是一种搜索全局最优解的有效方法…

Unity游戏源码分享-单车骑行游戏

Unity游戏源码分享-单车骑行游戏 项目地址&#xff1a;https://download.csdn.net/download/Highning0007/88057717

layui会议OA项目数据表格新增改查

文章目录 前言一、后台代码编写1.1 数据表优化1.2 R工具类1.3 UserDao新增改查1.4 Servlet的编写 二、前台页面的编写2.1 userManege.jsp2.2 userManage.js2.3 新增、修改用户共用jsp2.4add、edit的js 三、演示3.1 查询3.2 新增3.3 修改3.4 删除 前言 在上篇博客我们实现了左侧…

Qt|读写ini文件使用QSettings 节键值 设置相对路径

#include <QtWidgets/QApplication> #include <QWidget> #include <QSettings> #include <QString>int main(int argc, char *argv[]) {QApplication a(argc, argv);// Qt中使用QSettings类读写ini文件// QSettings构造函数的第一个参数是ini文件的路径…

I2S 总线接口

I2S(Inter-IC Sound)总线有时候也写作IIS&#xff0c;I2S是飞利浦公司提出的一种用于数字音频设备之间进行音频数据传输的总线。和I2C、SPI这些常见的通信协议一样&#xff0c;I2S总线用于主控制器和音频CODEC芯片之间传输音频数据。因此&#xff0c;要想使用I2S协议&#xff0…

自动化测试(一):网页结构分析与Google翻译2023.7.18爬虫实例

目录 1. 网页分析1.1 静态网页1.2 静态网页的爬取案例1.3 动态网页1.4 Google翻译2023.7.18爬虫实例1.4.1 基于网页分析的Google翻译2023.7.18爬虫实例1.4.2 基于Selenium的Google翻译2023.7.18爬虫实例 1. 网页分析 网页分析即通过检查元素&#xff0c;确定想提取的内容的区域…

【C语言】memcpy,memmove,memcmp,memset函数详解

memcpy,memmove,memcmp,memset函数详解 memcpy函数一、 memcpy函数的定义&#xff1a;二、memcpy函数的功能&#xff1a;三、memcpy函数模拟memcpy注意事项 memmove函数一、memmove函数简介二、memmove函数的模拟1.两种情况2模拟实现 memcmp函数memecmp函数介绍 memset函数mems…

企业UPS不稳定?不用怕,这个技巧简单且容易!

随着技术的不断发展&#xff0c;食品行业中的UPS监控系统变得更加智能化和便捷&#xff0c;使食品生产过程更加安全可靠。 UPS监控在食品行业中扮演着关键的角色&#xff0c;确保电力供应的稳定性对于食品生产和储存过程至关重要。 客户案例 安徽某食品制造公司是一家大型食品…

BI-SQL丨XML

XML SQL Server中&#xff0c;存在一种特殊类型的数据&#xff0c;就是XML数据类型。 可能看到这里&#xff0c;小伙伴都会产生疑惑&#xff0c;XML不是Web语言么&#xff1f;为什么在SQL Server里面也会有XML数据类型&#xff1f; 这个就要从SQL Server的应用开始说起了&am…

如何在Windows 10中启用或禁用缩略图预览

文件资源管理器可以在 Windows 10 中显示文件和文件夹的缩略图或图标。 本教程将向你展示如何在文件资源管理器中为你的帐户、所有用户或Windows 10 中的特定用户启用或禁用缩略图预览。 缩略图预览仅在打开并且选择了中等图标、大图标或超大图标文件夹视图布局时显示。 如果缩…

PADS VX2.5学习

1、关于库的定义 PADS中的元件库分为四个文件 &#xff1a;*.ld9 *.ln9 *.pd9 *.pt9 即CAE、 LINES、PCB DECAL、PART TYPE。只有这四个文件都存在才是一个完整的库&#xff0c;才可以加载。 我们设计的电路所用到的元件必须在PADS logic和PADS layout中都存在&#xff0c;…

Python:基于matplotlib与mayavi的3D可视化

文章目录 一、3D可视化常用方法二、三维图像在numpy、cv2、以及tifffile.imread中通道的区别三、项目实战&#xff08;1&#xff09;基于matplotlib的3D可视化&#xff08;2&#xff09;基于mayavi的3D可视化&#xff08;2.1&#xff09;立方体&#xff08;2.2&#xff09;3D灰…