Redis高级篇(一)

分布式缓存

-- 基于Redis集群解决单机Redis存在的问题

单机的Redis存在四大问题:

1.Redis持久化

Redis有两种持久化方案:RDB持久化、AOF持久化

1.1.RDB持久化

什么是RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

RDB的缺点

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险

  • fork子进程、压缩、写出RDB文件都比较耗时

1.1.1.执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令

  • 执行bgsave命令

  • Redis停机时

  • 触发RDB条件时

1)save命令

执行下面的命令,可以立即执行一次RDB:

save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令

下面的命令可以异步执行RDB:

这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

4)触发RDB条件

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes
​
# RDB文件名称
dbfilename dump.rdb  
​
# 文件保存的路径目录
dir ./ 

1.1.2.RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;

  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

1.2.AOF持久化

1.2.1.AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

1.2.2.AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:

1.2.3.AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3.RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

2.Redis主从

2.1.搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

具体搭建流程参考课前资料《Redis集群.md》

2.2.主从数据同步原理

2.2.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid

  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和 offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的 replid 和 offset,当第一次变成 slave,与 master 建立连接时,发送的 replid 和 offset 是自己的 replid 和 offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:

完整流程描述:

  • slave节点请求增量同步

  • master节点判断replid,发现不一致,拒绝增量同步

  • master将完整内存数据生成RDB,发送RDB到slave

  • slave清空本地数据,加载master的RDB

  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave

  • slave执行接收到的命令,保持与master之间的同步

2.2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输给 slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3.repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

直到数组被填满:

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。

2.3.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。

  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO

  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步

  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

3.Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:

哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作

  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主

  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线

•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

3.1.3.集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点

  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举

  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高

  • 最后是判断slave节点的运行id大小,越小优先级越高。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master

  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。

  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

3.2.搭建哨兵集群

具体搭建流程参考课前资料《Redis集群.md》

3.3.RedisTemplate集成哨兵机制

在Sentinel集群监管下的Redis主从集群,其节点角色会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们来实现RedisTemplate集成哨兵机制。

1.引入依赖

在项目的pom文件中引入依赖:

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2.配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:redis:sentinel:master: mymasternodes:- 192.168.150.101:27001- 192.168.150.101:27002- 192.168.150.101:27003

3.配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取

  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica

  • REPLICA:从slave(replica)节点读取

  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/28923.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【笔记MD】

https://editor.csdn.net/md/?not_checkout1&articleId131798584 这里写自定义目录标题 https://editor.csdn.net/md/?not_checkout1&articleId131798584欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入…

开发工具篇第二十六讲:使用IDEA进行本地调试和远程调试

开发工具篇第二十六讲&#xff1a;使用IDEA进行本地调试和远程调试 Debug用来追踪代码的运行流程&#xff0c;通常在程序运行过程中出现异常&#xff0c;启用Debug模式可以分析定位异常发生的位置&#xff0c;以及在运行过程中参数的变化&#xff1b;并且在实际的排错过程中&am…

Cesium-源码打包1.106

在有Cesium源码打包的需求下&#xff0c;可以这样进行&#xff0c; 1.106的源码目录结构如下&#xff1a; 1.在下载的源码目录中运行 npm install 出现node_modules文件夹&#xff0c;然后我们就可以根据需求去修改源码&#xff0c;本文用的版本是1.106&#xff0c; packag…

K8s集群架构组件(3)

&#xff08;2&#xff09;node组件 kubelet&#xff1a;master排到node节点代表&#xff0c;管理本机容器 kube-proxy&#xff1a;提供网络代理&#xff0c;负载均衡等操作

linux 安装pytorch3d的坑

事实上&#xff0c;只要按照官方文档的说明就可以完美安装。其中坑的地方在于conda的管理可能会导致下载的版本不符合你的要求&#xff08;例如下载成了cpu版本、下载的cuda版本&#xff09;而同样尝试使用源码编译以及其他方式下载库都会导致同样的问题&#xff0c;这里主要的…

前端工程中的设计模式应用

本文旨在系统性介绍一下23种设计模式&#xff0c;给出通俗易懂的案例、结构图及代码示例&#xff0c;这也是我自身学习理解的过程。或许其中的几种设计模式写的并不是很清晰明了易懂&#xff0c;更详细的可根据提到的参考文献进行深入学习。 什么是设计模式 设计模式这个概念是…

kafka接收外部接口的数据,并实现转发

目录 一、什么是kafka 二、kafka接收外部接口数据 三、kafka收到数据后转发 四、kafka总结 一、什么是kafka Kafka是一种分布式流式处理平台&#xff0c;最初由LinkedIn开发。它设计用于高吞吐量、低延迟的数据处理&#xff0c;能够处理大规模的实时数据流。Kafka采用发布…

非线性弹簧摆的仿真(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

OpenCv之图像轮廓(二)

目录 一、多边形逼近 二、凸包 三、最小外接矩形与最大外接矩形 一、多边形逼近 参照函数: approxPolyDP就是以多边形去逼近轮廓&#xff0c;采用的是Douglas-Peucker算法(DP) DP算法原理比较简单&#xff0c;核心就是不断找多边形最远的点加入形成新的多边形&#xff0c;直…

数据结构-栈和队列

栈和队列 栈栈的基本概念栈的结构初始化栈销毁栈压栈出栈栈中元素的个数查找栈顶的元素压栈和出栈的一个演示全部代码Stack.hStack.cTest.c 队列队列的基本概念节点和队列的定义队列的初始化销毁队列入队出队计算队列中元素的个数判断队列是否为空返回队列中的队头元素返回队列…

暑期代码每日一练Day3:874. 模拟行走机器人

题目 874. 模拟行走机器人 分析 这道题就是个简单的模拟 主要有两点考察点&#xff1a; 对方向数组的运用 方向数组存储的是各个方向的单位向量&#xff0c;也即&#xff1a; 方向XY向北01向东10向南0-1向西-10 存储在数组中&#xff0c;则是方向数组&#xff1a; in…

Spring(一):Spring 的创建和使用

目录 Spring 是什么&#xff1f; 什么是容器&#xff1f; 什么是 IoC&#xff1f; 什么是 IoC&#xff1f; IoC的优点是啥呢&#xff1f; 理解 IoC DI 概念说明 Spring 的创建 创建 Spring 项目 1. 创建⼀个普通 Maven 项⽬。 2. 添加 Spring 框架⽀持&#xff08;s…