【yolov8系列】 yolov8 目标检测的模型剪枝

前言

最近在实现yolov8的剪枝,所以有找相关的工作作为参考,用以完成该项工作。

  • 先细读了 Torch-Pruning,个人简单记录了下 【剪枝】torch-pruning的基本使用,有框架完成的对网络所有结构都自适应剪枝是最佳的,但这里没有详细记录torch-pruning的yolov8的剪枝,是因为存在不解 对其yolov8具体的剪枝代码中操作:“比较疑惑 replace_c2f_with_c2f_v2(model.model) 这句注释掉了代码就跑不通了。是tp不支持原本 c2f 吗,我如果想使用c2f进行剪枝,应该怎么办呢”。待解决该问题,然后在记录。
  • 然后另外参考博客 Jetson nano部署剪枝YOLOv8,该方法的代码实现仅针对yolov8 的剪枝,但可从中借鉴如何利用bn对模型进行剪枝,举一反三应用到其它工程中。bn剪枝的原理可以在 3.1 常用的结构化剪枝原理 简单记录。

1. 剪枝工程搭建

yolov8工程下载
本地有个版本 Ultralytics 8.0.81,所以该篇博客基于该版本记录。不同版本可能带来的影响,所以当使用最新版本出bug时,又无法定位和解决,可先尝试8.0.81版本。我们剪枝过程在VOC数据集上完成尝试。
在这里插入图片描述

这里添加两个代码文件
分别为【LL_pruning.pyLL_train.py】存放于根目录下在这里插入图片描述

  • LL_train.py的内容为
    from ultralytics import YOLO
    import os
    # os.environ["CUDA_VISIBLE_DEVICES"]="0,1" root = os.getcwd()
    ## 配置文件路径
    name_yaml             = os.path.join(root, "ultralytics/datasets/VOC.yaml")
    name_pretrain         = os.path.join(root, "yolov8s.pt")
    ## 原始训练路径
    path_train            = os.path.join(root, "runs/detect/VOC")
    name_train            = os.path.join(path_train, "weights/last.pt")
    ## 约束训练路径、剪枝模型文件
    path_constraint_train = os.path.join(root, "runs/detect/VOC_Constraint")
    name_prune_before     = os.path.join(path_constraint_train, "weights/last.pt")
    name_prune_after      = os.path.join(path_constraint_train, "weights/last_prune.pt")
    ## 微调路径
    path_fineturn         = os.path.join(root, "runs/detect/VOC_finetune")def else_api():path_data = ""path_result = ""model = YOLO(name_pretrain) metrics = model.val()  # evaluate model performance on the validation setmodel.export(format='onnx', opset=11, simplify=True, dynamic=False, imgsz=640)model.predict(path_data, device="0", save=True, show=False, save_txt=True, imgsz=[288,480], save_conf=True, name=path_result, iou=0.5)  # 这里的imgsz为高宽def step1_train():model = YOLO(name_pretrain) model.train(data=name_yaml, device="0,1", imgsz=640, epochs=50, batch=32, workers=16, save_period=1, name=path_train)  # train the modeldef step2_Constraint_train():model = YOLO(name_train) model.train(data=name_yaml, device="0,1", imgsz=640, epochs=50, batch=32, workers=16, save_period=1,name=path_constraint_train)  # train the modeldef step3_pruning():from LL_pruning import do_pruningdo_pruning(os.path.join(name_prune_before, name_prune_after))def step4_finetune():model = YOLO(name_prune_after)     # load a pretrained model (recommended for training)model.train(data=name_yaml, device="0,1", imgsz=640, epochs=50, batch=32, workers=16, save_period=1, name=path_fineturn)  # train the modelstep1_train()
    # step2_Constraint_train()
    # step3_pruning()
    # step4_finetune()
  • LL_pruning.py的内容为
    from ultralytics import YOLO
    import torch
    from ultralytics.nn.modules import Bottleneck, Conv, C2f, SPPF, Detect
    import os
    # os.environ["CUDA_VISIBLE_DEVICES"] = "2"class PRUNE():def __init__(self) -> None:self.threshold = Nonedef get_threshold(self, model, factor=0.8):ws = []bs = []for name, m in model.named_modules():if isinstance(m, torch.nn.BatchNorm2d):w = m.weight.abs().detach()b = m.bias.abs().detach()ws.append(w)bs.append(b)print(name, w.max().item(), w.min().item(), b.max().item(), b.min().item())print()# keepws = torch.cat(ws)self.threshold = torch.sort(ws, descending=True)[0][int(len(ws) * factor)]def prune_conv(self, conv1: Conv, conv2: Conv):## a. 根据BN中的参数,获取需要保留的index================gamma = conv1.bn.weight.data.detach()beta  = conv1.bn.bias.data.detach()keep_idxs = []local_threshold = self.thresholdwhile len(keep_idxs) < 8:  ## 若剩余卷积核<8, 则降低阈值重新筛选keep_idxs = torch.where(gamma.abs() >= local_threshold)[0]local_threshold = local_threshold * 0.5n = len(keep_idxs)# n = max(int(len(idxs) * 0.8), p)print(n / len(gamma) * 100)# scale = len(idxs) / n## b. 利用index对BN进行剪枝============================conv1.bn.weight.data = gamma[keep_idxs]conv1.bn.bias.data   = beta[keep_idxs]conv1.bn.running_var.data = conv1.bn.running_var.data[keep_idxs]conv1.bn.running_mean.data = conv1.bn.running_mean.data[keep_idxs]conv1.bn.num_features = nconv1.conv.weight.data = conv1.conv.weight.data[keep_idxs]conv1.conv.out_channels = n## c. 利用index对conv1进行剪枝=========================if conv1.conv.bias is not None:conv1.conv.bias.data = conv1.conv.bias.data[keep_idxs]## d. 利用index对conv2进行剪枝=========================if not isinstance(conv2, list):conv2 = [conv2]for item in conv2:if item is None: continueif isinstance(item, Conv):conv = item.convelse:conv = itemconv.in_channels = nconv.weight.data = conv.weight.data[:, keep_idxs]def prune(self, m1, m2):if isinstance(m1, C2f):      # C2f as a top convm1 = m1.cv2if not isinstance(m2, list): # m2 is just one modulem2 = [m2]for i, item in enumerate(m2):if isinstance(item, C2f) or isinstance(item, SPPF):m2[i] = item.cv1self.prune_conv(m1, m2)def do_pruning(modelpath, savepath):pruning = PRUNE()### 0. 加载模型yolo = YOLO(modelpath)                  # build a new model from scratchpruning.get_threshold(yolo.model, 0.8)  # 获取剪枝时bn参数的阈值,这里的0.8为剪枝率。### 1. 剪枝c2f 中的Bottleneckfor name, m in yolo.model.named_modules():if isinstance(m, Bottleneck):pruning.prune_conv(m.cv1, m.cv2)### 2. 指定剪枝不同模块之间的卷积核seq = yolo.model.modelfor i in [3,5,7,8]: pruning.prune(seq[i], seq[i+1])### 3. 对检测头进行剪枝# 在P3层: seq[15]之后的网络节点与其相连的有 seq[16]、detect.cv2[0] (box分支)、detect.cv3[0] (class分支)# 在P4层: seq[18]之后的网络节点与其相连的有 seq[19]、detect.cv2[1] 、detect.cv3[1] # 在P5层: seq[21]之后的网络节点与其相连的有 detect.cv2[2] 、detect.cv3[2] detect:Detect = seq[-1]last_inputs   = [seq[15], seq[18], seq[21]]colasts       = [seq[16], seq[19], None]for last_input, colast, cv2, cv3 in zip(last_inputs, colasts, detect.cv2, detect.cv3):pruning.prune(last_input, [colast, cv2[0], cv3[0]])pruning.prune(cv2[0], cv2[1])pruning.prune(cv2[1], cv2[2])pruning.prune(cv3[0], cv3[1])pruning.prune(cv3[1], cv3[2])# ***step4,一定要设置所有参数为需要训练。因为加载后的model他会给弄成false。导致报错# pipeline:# 1. 为模型的BN增加L1约束,lambda用1e-2左右# 2. 剪枝模型,比如用全局阈值# 3. finetune,一定要注意,此时需要去掉L1约束。最终final的版本一定是去掉的for name, p in yolo.model.named_parameters():p.requires_grad = True# 1. 不能剪枝的layer,其实可以不用约束# 2. 对于低于全局阈值的,可以删掉整个module# 3. keep channels,对于保留的channels,他应该能整除n才是最合适的,否则硬件加速比较差#    n怎么选,一般fp16时,n为8; int8时,n为16#    cp.async.cg.sharedyolo.val()torch.save(yolo.ckpt, savepath)yolo.model.pt_path = yolo.model.pt_path.replace("last.pt", os.path.basename(savepath))yolo.export(format="onnx")## 重新load模型,修改保存命名,用以比较剪枝前后的onnx的大小yolo = YOLO(modelpath)  # build a new model from scratchyolo.export(format="onnx")if __name__ == "__main__":modelpath = "runs/detect1/14_Constraint/weights/last.pt"savepath  = "runs/detect1/14_Constraint/weights/last_prune.pt"do_pruning(modelpath, savepath)
    

2 剪枝全流程

剪枝的流程可分为

  • 正常训练:我们可以通过模型得到未剪枝时的精度,方便剪枝前后进行精度对比
  • 稀疏训练:bn的参数约等于0的并不多,所以需要稀疏训练,使得部分参数接近0,然后再对卷积核进行裁剪,这样可以减小剪枝对网络输出的影响。
  • 剪枝:根据bn中参数对相应的卷积进行剪枝。
  • 微调:剪枝后模型必然会降低精度,所以需要再微调使其恢复精度。

2.1 正常训练

  1. 设置yaml文件:该工程使用VOC数据集,若已下载,在yaml文件中设置好数据路径。若无下来,运行训练代码时,工程会在一开始自动下载数据集,但下载速度可能会慢。
    LL_train.py 中设置:在这里插入图片描述
    ultralytics/datasets/VOC.yaml中如下::在这里插入图片描述
  2. LL_train.py脚本中,调用 step1_train(),注释其它的函数调用,如下图。

    在这里插入图片描述
  3. 激活相应环境,进行训练。运行python LL_train.py,训练结束指标如下:

    在这里插入图片描述

2.2 稀疏训练

  1. ./ultralytics/yolo/engine/trainer.py代码中修改:
    在[反向传播]和[梯度更新] 之间添加[bn的L1正则],使得bn参数在训练时变得稀疏。

                    # Backwardself.scaler.scale(self.loss).backward()## add start=============================## add l1 regulation for step2_Constraint_train               l1_lambda = 1e-2 * (1 - 0.9 * epoch / self.epochs)for k, m in self.model.named_modules():if isinstance(m, nn.BatchNorm2d):m.weight.grad.data.add_(l1_lambda * torch.sign(m.weight.data))m.bias.grad.data.add_(1e-2 * torch.sign(m.bias.data))## add end ==============================# Optimize - https://pytorch.org/docs/master/notes/amp_examples.htmlif ni - last_opt_step >= self.accumulate:self.optimizer_step()last_opt_step = ni
    

    在这里插入图片描述

  2. LL_train.py 中修改:
    在这里插入图片描述

  3. 然后进行训练,结束后的验证指标如下图。
    可以在以下截屏看到最顶行,此时模型共168层、参数量11133324、计算量28.5GFLOPs

    在这里插入图片描述


2.3 模型剪枝

  1. 修改LL_train.py 并训练:

    在这里插入图片描述在这里插入图片描述
  2. 看下剪枝后的文件
    du -sh ./runs/detect/VOC_Constraint/weights/last*
    
    终端输入命名如下,可查看文件大小。可以看到其中剪枝前后的pt的last.pt/last_prune.pt,对应的onnx模型为last.onnx last_prune.onnx,可以看剪枝后的pt增大了,但onnx减小了,我们只需要关注onnx的大小即可,由43M 剪枝为36M。

    在这里插入图片描述

2.4 微调

  1. 将第二步的约束训练添加的bn限制注释掉
    在这里插入图片描述
  2. 加载剪枝后的模型作为训练时的网络结构。在 ultralytics/yolo/engine/trainer.py 中修改内容:
    370行的 self.trainer.model 是从yaml中加载的模型( 未剪枝前的) 以及其它的配置信息,从pt文件中加载的权重( 剪枝后的)。所以只需将该变量中的网络结构更新为剪枝后的网络结构即可,增加代码可解决问题。
    否则训练出来的模型参数不会发生变化。
    self.trainer.model.model = self.model.model
    

在这里插入图片描述

  1. ultralytics/yolo/engine/trainer.py 中增加内容如下:
    model.22.dfl.conv.weight的梯度置为Fasle,是因为该层是解析box时的一个向量,具体的为 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],为了便捷的将该处理保存在模型中,所以就定义成一个卷积,卷积的权重为该向量。所以该卷积不需要梯度、不需要反向传播,所以该层的param.requires_grad = False
    在这里插入图片描述
    否则训练过程中会报错:debug时报错如下图在这里插入图片描述

至此,就可微调训练。训练结果如下:
在这里插入图片描述
若不进行修改,依然会从modeld的yaml文件中加载模型。参数量和计算量不会有任何变化。下图是未做更多的修改训练后的信息。这样不是我们想要的状态。
在这里插入图片描述


2.5 剪枝完成后的分析

剪枝过程中的所有训练mAP、准召日志,使用tensorboard打开查看对应变化曲线:本次0.8的剪枝率下剪枝前后的指标变化并不大。在错误微调时指标整体偏低。在这里插入图片描述

  • 正常训练:参数量 11133324、计算量28.5GFLOPs、验证集上的准召:0.812、0.727
  • 剪枝微调后:参数量9261550、计算量19.3GFLOPs、验证集上的准召:0.811、0.699

可以看出在0.8的剪枝率下,剪枝后的模型与原本模型的验证集上的准召相差不大。运行时间上,若在高性能GPU上不会有明显加速,在端侧会有加速。具体的数值,后面有空测试后附上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/290275.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】自定义类型之联合和枚举

目录 1. 前言2. 联合体2.1 联合体类型的声明2.2 联合体的特点2.3 相同成员的结构体和联合体对比2.4 联合体大小的计算2.4 判断当前机器的大小端 3. 枚举3.1 枚举类型的声明3.2 枚举类型的优点3.3 枚举类型的使用 1. 前言 在之前的博客中介绍了自定义类型中的结构体&#xff0c;…

加速度|SHOPFA商城如何与阿里云短信融合

商城系统上线之后&#xff0c;需要与短信平台进行融合&#xff0c;当客户下完订单之后&#xff0c;能够接收到支付短信、发货短信、配送短信等进度提示信息。阿里云短信&#xff0c;作为国内领先的短信平台&#xff0c;隶属于阿里云计算有限公司&#xff0c;背后强大的研发团队…

苏宁易购商品详情API:电商实时数据

一、引言 在当前的电商行业中&#xff0c;数据是最为宝贵的资源之一。如何获取实时、准确的数据&#xff0c;对于电商业务的运营和优化至关重要。作为中国领先的电商平台之一&#xff0c;苏宁易购提供了丰富的API接口&#xff0c;其中包括商品详情API&#xff0c;以便第三方开…

flutter开发实战-第一帧布局完成回调实现

flutter开发实战-第一帧布局完成回调实现 在开发中&#xff0c;我们有时候需要在第一帧布局完成后调用一些相关的方法。这里记录一下是实现过程。 Flutter中有多种不同的Binding&#xff0c;每种Binding都负责不同的功能。下面是Flutter中常见的Binding&#xff1a; 这里简单…

oracle vm virtualBox虚拟机网卡设置

一、桥接模式 1、桥接模式自动分配IP 通过dns自动分配Ip方式、重启服务器可能会出现IP变动的情况。 选中虚拟机--设置--网络&#xff0c;链接方式选择“桥接网卡”&#xff0c;界面名称选择“需要桥接的网卡名称” 不清楚的可以在宿主机网络设置查看&#xff08;需要桥接哪…

JVM调优小结

JVM常见工具介绍 jinfo(查看配置信息) 查看Java应用程序配置参数或者JVM系统属性&#xff0c;相关命令详情我们可以使用-help或者man命令查看&#xff0c;如下所示: [rootxxxxxtmp]# jinfo -help Usage:jinfo [option] <pid>(to connect to running process)jinfo [op…

一键在线获取APP公钥、包名、签名及备案信息方法介绍

​ 目录 一键在线获取APP公钥、包名、签名及备案信息方法介绍 摘要 引言 一键获取APP包信息 操作步骤 ​编辑 解析报告 总结 致谢 关键词 参考资料 声明 摘要 本文介绍了一款在线APP解析工具&#xff0c;可以一键获取APP的公钥、包名、签名等基础信息&#xff0c;…

3D材质编辑器

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 GLTF 编辑器 -NSDT 支持GLTF/GLB模型的基本材质的编辑修改&#xff0…

autostart 应用自启动配置

linux 通用配置 1. 编写 desktop 文件 # cat xxx.desktop [Desktop Entry] TypeApplication Exec/xxx/app //应用程序 2. 将 xxx.desktop 文件拷贝到 /etc/xdg/autostart/ 下面 # cp xxx.desktop /etc/xdg/autostart/

Linux Centos 配置 Docker 国内镜像加速

在使用 Docker 进行容器化部署时&#xff0c;由于国外的 Docker 镜像源速度较慢&#xff0c;我们可以配置 Docker 使用国内的镜像加速器&#xff0c;以提高下载和部署的效率。本文将介绍如何在 CentOS 系统上配置 Docker 使用国内镜像加速。 步骤一&#xff1a;安装 Docker 首…

手机怎么设置每年公历或农历生日提醒?生日提醒设置小妙招

生日是一个人在一年中比较特殊的日子之一&#xff0c;人们通常希望能够在这一天得到亲朋好友的祝福和庆祝。然而&#xff0c;随着人们生活节奏的加快&#xff0c;很多人表示自己很容易忘记他人的生日&#xff0c;导致不能够及时送出祝福和礼物。如果经常忘记亲朋好友的生日&…

搭建动态网站之——基于Redhat8.6搭建Discuz论坛

目录 一、动态网站与静态网站区别 1、提供用户互动接口的动态网站 2、搭建动态网站的需求&#xff1a; 二、搭建步骤 第一步&#xff1a;www服务器配置 第二步;编辑网页文件 第三步&#xff1a;使用xftp 将Discuz包传到/discuz解压 1、将Discuz包移动到/discuz 2、解压…