C国演义 [第十二章]

第十二章

  • 打家劫舍
    • 题目理解
    • 步骤
      • dp数组
      • 递推公式
      • 初始化
      • 遍历顺序
    • 代码
  • 打家劫舍II
    • 题目理解
    • 步骤
      • 递推公式
      • 初始化
      • 遍历顺序
    • 代码

打家劫舍

力扣链接

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额

示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)
偷窃到的最高金额 = 1 + 3 = 4

示例 2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)
偷窃到的最高金额 = 2 + 9 + 1 = 12

  • 提示:
    1 <= nums.length <= 100
    0 <= nums[i] <= 400

题目理解

不能在相邻的房屋进行偷窃, 还要求一夜之间能够偷窃的最高金额
那小偷到这个房屋偷还是不偷?

⇒ 偷窃到第 i 个房屋的最大金额 取决于上一次偷窃的是哪个房屋(取决于 第 i -1 个房屋的偷取状态 和 第 i - 2 个房屋的偷取状态)
⇒ 我们可以采用 动态规划的思想

步骤

dp数组

影响因素只有一个, 上一次偷窃的是哪个房屋⇒ dp数组用 一维 的就可以
dp[i] — — [0, i]房屋所得到的最大金额

递推公式

偷窃到第 i 个房屋, 我们能够进行的操作有哪一些:

  1. 所相邻的房屋并没有偷窃, 那我们这个房屋就能进行偷窃 — — dp[i-2] + nums[i]
  2. 所相邻的房屋已经偷窃了, 那我们这个房屋就不能进行偷窃 — — dp[i-1]

最后的结果, 是取两者的最大值⇒ dp[i] = max(dp[i-1], dp[i-2] + nums[i])

初始化

根据递归公式, 我们发现最基础的是 dp[0] 和 dp[1]
dp[0] — — 第一个房屋所能偷窃的最大价值, 那肯定是偷了它 — — dp[0] = nums[0]
dp[1] — — 前两个房屋所能偷窃的最大价值, 那肯定是偷它们之间的最大价值的那个 — — dp[1] = max(nums[0], nums[1])

遍历顺序

根据递归公式, 第 i 天的状态是由前面决定的
⇒ 那么是 由前到后的遍历方向

代码

class Solution {
public:int rob(vector<int>& nums) {// dp[i] -- -- 区间[0, i]的最大价值vector<int> dp(nums.size() + 1, 0);dp[0] = nums[0];if(nums.size() > 1)dp[1] = max(nums[0], nums[1]);for(int i = 2; i < nums.size(); i++){dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[nums.size() - 1];}
};


打家劫舍II

力扣链接

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额

示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的

示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4

示例 3:
输入:nums = [1,2,3]
输出:3

  • 提示:
    1 <= nums.length <= 100
    0 <= nums[i] <= 1000

题目理解

这个题目跟上面的很相似, 但是有一个点是不同的:
上面是个线性的, 这个题目是圆形的

那么, 我们能不能用上一个题目的解法来解决这个题目呢?
首先, 先将圆形转化为线性的

在区间[0, i]中, 我们发现:

  • 0为开端, 那么 i 是不能是结尾 (最大是 i - 1结尾)
  • 1为开端, 那么 i 是能是结尾的
    ⇒ 那么我们就可以划分为两个区间:
    [0, i - 1] 和 [1, i]

步骤

递推公式

偷窃到第 i 个房屋, 我们能够进行的操作有哪一些:

  1. 所相邻的房屋并没有偷窃, 那我们这个房屋就能进行偷窃 — — dp[i-2] + nums[i]
  2. 所相邻的房屋已经偷窃了, 那我们这个房屋就不能进行偷窃 — — dp[i-1]

最后的结果, 是取两者的最大值⇒ dp[i] = max(dp[i-1], dp[i-2] + nums[i])

初始化

  • 区间为[0, n - 1]:
    dp[0] = nums[0]
    dp[1] = max(nums[0], nums[1])

  • 区间为[1, n]:
    dp[1] = nums[1]
    dp[2] = max(nums[1], nums[2])

遍历顺序

根据递归公式, 第 i 天的状态是由前面决定的
⇒ 那么是 由前到后的遍历方向

代码

class Solution {
public:int rob(vector<int>& nums) {// 将环形问题拆分为线性问题// 将区间[0, n] 拆分为 包含第一个节点,不包含最后一个节点 和 不包含第一个节点,包含最后一个节点// 即将区间[0, n] 拆分为 [0, n-1] 和 [1, n] 两个区间// 最后返回两个区间最大值的最大值if(nums.size() == 1)  return nums[0];if(nums.size() == 2)  return max(nums[0], nums[1]);vector<int> dp(nums.size() + 1, 0);dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);for(int i = 2; i < nums.size() - 1; i++){dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}int max1 = dp[nums.size() - 2];dp[1] = nums[1];dp[2] = max(nums[1], nums[2]);for(int i = 3; i < nums.size(); i++){dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}int max2 = dp[nums.size() - 1];return max(max1, max2);}
};


连伟人的一生都充满了那么大的艰辛,一个平凡的人吃点苦又算得了什么呢? — — 路遥

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/29096.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

周报(1)

文章预览&#xff1a; 本周内容&#xff1a;Python语言的学习和pytorch安装配置1 Python基础知识1.1 交互式解释器1.2 数和表达式1.3 变量1.4 获取用户输入1.5 函数1.6 模块1.7 字符串1.7.1 单引号字符串以及对引号转义1.7.2 拼接字符串1.7.3 字符串表示str 和repr Pytorch 的安…

Knife4j-的使用(详细教程)

文章目录 前言一、简介二、版本参考三、基本使用1. 导入相关依赖2. 比对效果3. 增强特性应用 四、Spring-Cloud 整合1. 项目准备2. 实现步骤2.1 依赖引入2.2 编写配置类2.2.1基础信息配置2.2.2 配置接口信息2.2.3 安全认证配置 2.3 常用注解的使用2.3.1 Api2.3.2 ApiOperation2…

【unity实战】手搓一个网格放置功能,及装修建造种植功能(2d3d通用,附源码)

文章目录 前言开始项目和素材1. 素材来源2. 开始项目包&#xff08;两种选择一种下载导入即可&#xff09; 开始1. 修改鼠标指针显示2. 给鼠标对应的平面位置绑定对应的指示器3. 使用Shader Graph创建网格可视化3. 网格的大小缩放和颜色控制4. 优化5. 扩展说明5.1 我们就可以通…

springboot 多数据源配置

1.引入相关pom文件 <!-- spring boot 启动 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId><exclusions><exclusion><artifactId>log4j-api</artifactId&…

(Linux)查看端口占用并关闭进程

1、查看端口占用 netstat -anp |grep 端口号 → 列出所有端口-a或--all&#xff1a;显示所有连线中的Socket&#xff1b;-n: 显示数字地址-p: 显示程序的PID和名称 netstat -tunlp |grep 3306 → 端口号netstat -tunlp |grep mysql → 进程名称netstat -tunlp |grep 29520 →…

智能照明控制系统在体育场馆项目中的应用

摘要&#xff1a;在智能化时代&#xff0c;运用智能技术设计照明已经成为社会发展的关键组成。文章简单介绍了智能体育场馆的含义&#xff0c;然后围绕智能照明系统的基本要求&#xff0c;从灯具选型、灯具配光的光线选择与瞄准、灯具眩光与外溢光控制&#xff1b;基本控制方式…

Windows下 创建 FTP 服务器及相关设置

Windows 创建 FTP 服务器 1. 示例功能说明 FTP 服务器根路径下的目录&#xff1a; C:\USERS\SQQIAN\DESKTOP\FTP └─localuser├─FTP1 # 只有用户名为FTP1可以访问&#xff0c;读写均可│ FTP11.txt│├─FTP2 # 只有用户名为FTP2…

【MongoDB实战】数据备份与恢复(部分迁移)

场景&#xff1a; 需求&#xff1a; 解决方案&#xff1a; 步骤&#xff1a; Stage 1&#xff1a;【生产环境】修改备份文件映射 Stage 2&#xff1a;【生产环境】重新构建mongodb Stage 3&#xff1a;【客户环境】修改备份文件映射&#xff0c;同 Stage 1 Stage 4&…

RPC分布式网络通信框架(二)—— moduo网络解析

文章目录 一、框架通信原理二、框架初始化框架初始化 三、调用端&#xff08;客户端&#xff09;调用端框架调用端主程序 四、提供端&#xff08;服务器&#xff09;提供端主程序提供端框架NotifyService方法Run方法muduo库的优点网络代码RpcProvider::OnConnection业务代码Rpc…

Nature Neuroscience:慢波、纺锤波和涟波耦合如何协调人类睡眠期间的神经元加工和通信

摘要 学习和可塑性依赖于休息期间神经元回路的微调调节。一个尚未解决的难题是&#xff0c;在没有外部刺激或有意识努力的情况下&#xff0c;睡眠中的大脑如何协调神经元的放电率(FRs)以及神经回路内外的通信&#xff0c;以支持突触和系统巩固。利用颅内脑电图对人类海马体和周…

如何把caj文件改成PDF格式?分享三个免费的方法!

在学术研究中&#xff0c;我们可能会遇到CAJ文件&#xff0c;这是一种在中国学术界广泛使用的文档格式。然而&#xff0c;与PDF文件相比&#xff0c;CAJ文件的查看和分享并不那么便捷。下面&#xff0c;我会为你介绍三种免费且简便的方法&#xff0c;帮助你将CAJ文件转化为PDF格…

使用3DS Max 创建未来派螺栓枪模型

推荐&#xff1a; NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 步骤 1 创建一个框并将其转换为可编辑多边形&#xff08;右键单击>转换为&#xff1a;>转换为可编辑多边形&#xff09;&#xff0c;然后使用连接添加一系列边循环&#xff0c;如下图所示。 步骤 2 …