图论 | 网络流的基本概念

文章目录

    • 流网路
    • 残留网络
    • 增广路径
    • 最大流最小割定理
    • 最大流
      • Edmonds-Karp 算法
        • 算法步骤
        • 程序代码
        • 时间复杂度

流网路

流网络: G = ( V , E ) G = (V, E) G=(V,E)

在这里插入图片描述

  • 有向图,不考虑反向边
  • s:源点
  • t:汇点
  • c ( u , v ) c(u, v) c(u,v):边的最大容量
  • 可行流 f f f
    • 容量限制: 0 ≤ f ( u , v ) ≤ c ( u , v ) 0 \leq f(u, v) \leq c(u, v) 0f(u,v)c(u,v)
    • 流量守恒:除了源点和汇点,所有点满足 流入 = 流出 流入 = 流出 流入=流出
  • ∣ f ∣ |f| f:可行流的流量,即从源点流向汇点的速率。一种通用的解释是 从源点流出的流量 − 流入源点的流量 从源点流出的流量 - 流入源点的流量 从源点流出的流量流入源点的流量
  • 最大流:最大可行流

残留网络

残留网络定义:一个可行流流网络 f f f 对应一个残留网络 G f G_f Gf

  • 点集:与原图的点集一样 V f = V V_f = V Vf=V
  • 边集:不仅包含原图的边,同时包含所有边的方向边,即 E f = E 和 E 中的所有反向边 E_f = E 和 E中的所有反向边 Ef=EE中的所有反向边
  • 边的容量: c f ( u , v ) c_f(u, v) cf(u,v)
    • 原图中的边:剩下的容量,即 c ( u , v ) − f ( u , v ) c(u, v) - f(u, v) c(u,v)f(u,v)
    • 反向边:可以退回的流量,即 f ( v , u ) f(v, u) f(v,u)

重要结论:原网络的可行流 f f f 加上可行流对应的残留网络 G f G_f Gf,也是一个可行流

  • 对应边相加:若方向同则相加;若反向反则相减
  • 结论: ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| f+f=f+f
  • 进一步,若残留网络没有可行流,那么原网络的可行流就一定是最大流

增广路径

在残留网络里,如果沿着容量大于 0 的边走,能走到汇点,则这条路径叫做增广路径

  • 若存在一个增广路径,根据 ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| f+f=f+f,原来的可行流一定不是最大流
  • 若不存在增广路径,我们可以得出当前可行流就是最大流

将点集 V 分成 S 和 T 两个子集

  • 分割要满足 S ∪ T = V , S ∩ T = ∅ S ∪ T = V, S ∩ T = \emptyset ST=VST=
  • 点集不一定连通

割的容量: c ( S , T ) = ∑ u ∈ S ∑ v ∈ T c ( u , v ) c(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} c(u, v) c(S,T)=uSvTc(u,v)

  • 最小割:最小割的容量
  • 割的容量不考虑反向边

割的流量: f ( S , T ) = ∑ u ∈ S ∑ v ∈ T f ( u , v ) − ∑ u ∈ T ∑ v ∈ S f ( u , v ) f(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} f(u, v) - \sum_{u ∈ T} \sum_{v ∈ S} f(u, v) f(S,T)=uSvTf(u,v)uTvSf(u,v)

  • 流过去的流量减去流过来的流量
  • 割的流量考虑反向边

重要性质:

  • 对于任意一个割,割的流量一定小于等于割的容量,即 f ( S , T ) ≤ c ( S , T ) f(S, T) \leq c(S, T) f(S,T)c(S,T)

  • 割的流量等于原流网络的流量,即 f ( S , T ) = ∣ f ∣ f(S,T) = |f| f(S,T)=f

  • f ( X , Y ) = − f ( Y , X ) f(X, Y) = -f(Y, X) f(X,Y)=f(Y,X)

  • f ( Z , X ∪ Y ) = f ( Z , X ) + f ( Z , Y ) f(Z, X ∪ Y) = f(Z, X) + f(Z, Y) f(Z,XY)=f(Z,X)+f(Z,Y)

  • f ( X ∪ Y , Z ) = f ( X , Z ) + f ( Y , Z ) f(X ∪ Y, Z) = f(X, Z) + f(Y, Z) f(XY,Z)=f(X,Z)+f(Y,Z)

最大流最小割定理

以下三个条件是等价的

  1. 可行流 f f f 是最大流
  2. 可行流 f f f 的残留网络中不存在增广路
  3. 存在某个割 [ S , T ] [S, T] [S,T] ∣ f ∣ = c ( S , T ) |f| = c(S, T) f=c(S,T)

最大流

Edmonds-Karp 算法

算法步骤

维护流网络的残留网络,不断进行以下流程:

  1. 找一条增广路 f ′ f' f:可以用 BFS 进行搜索
  2. 更新残留网络 G f → G f + f ′ G_f → G_{f + f'} GfGf+f
程序代码
#include <iostream>
#include <algorithm>
#include <cstring>using namespace std;const int N = 1010, M = 20020, INF = 1e8;// 邻接表存储残留网络
// 正向边和反向边成对存在,正向边的下标异或上1得到方向边的下标
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;  // f表示容量
int q[N], d[N], pre[N];
bool st[N];  // 避免重复搜索void add(int a, int b, int c)
{// 正向边 e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;// 反向边,初始容量为0e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}// bfs找增广路
bool bfs()
{int hh = 0, tt = 0;memset(st, false, sizeof(st));q[0] = S, st[S] = true, d[S] = INF;while(hh <= tt) {// 从队列中弹出一个元素进行BFSint t = q[hh++];for(int i = h[t]; ~i; i = ne[i]) {// 节点t的临接边i的下一节点verint ver = e[i];// 没遍历过且边i的容量不为0if( !st[ver] && f[i] ) {st[ver] = true;// 流到节点ver的流量为流到t的流量和边i容量的最小值d[ver] = min(d[t], f[i]);// 记录节点ver前驱边的编号pre[ver] = i;if(ver == T)  return true;// ver入队q[++tt] = ver;}}}return false;
}// EK 算法
int EK()
{int r = 0;while( bfs() ) {// 加上增广路的流量r += d[T];// 更新残留网络for(int i = T; i != S; i = e[pre[i] ^ 1]) {// 正向边更新f[pre[i]] -= d[T];// 反向边更新f[pre[i] ^ 1] += d[T];}}return r;
}int main()
{// 点数、边数、源点、汇点cin >> n >> m >> S >> T;// 初始化邻接表memset(h, -1, sizeof(h));while( m-- ) {int a, b, c;// 边ab的容量为ccin >> a >> b >> c;add(a, b, c);}cout << EK() << endl;return 0;
}
时间复杂度

O ( V E 2 ) O(VE^2) O(VE2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/291606.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JVM】一、认识JVM

文章目录 1、虚拟机2、Java虚拟机3、JVM的整体结构4、Java代码的执行流程5、JVM的分类6、JVM的生命周期 1、虚拟机 虚拟机&#xff0c;Virtual Machine&#xff0c;一台虚拟的计算机&#xff0c;用来执行虚拟计算机指令。分为&#xff1a; 系统虚拟机&#xff1a;如VMware&am…

Jenkins + gitlab 持续集成和持续部署的学习笔记

1. Jenkins 介绍 软件开发生命周期(SLDC, Software Development Life Cycle)&#xff1a;它集合了计划、开发、测试、部署的集合。 软件开发瀑布模型 软件的敏捷开发 1.1 持续集成 持续集成 (Continuous integration 简称 CI): 指的是频繁的将代码集成到主干。 持续集成的流…

vue 简单实现购物车:商品基础信息最终的 html 文件 + 商品计数器的组件处理,实现了购物车;

购物车实现过程&#xff1a; Ⅰ、商品购物车作业需求&#xff1a;1、商品购物车页面示例&#xff1a;2、具体需求&#xff1a; Ⅱ、html 文件的构建&#xff1a;商品购物车.html Ⅲ、组件文件的构建&#xff1a;商品购物车1.js Ⅳ、小结&#xff1a; Ⅰ、商品购物车作业需求&am…

Linux服务器 部署飞书信息发送服务

项目介绍&#xff1a; 飞书信息发送服务是指将飞书信息发送服务部署到一个Linux服务器上。飞书是一款企业级的即时通讯和协作工具&#xff0c;支持发送消息给飞书的功能。通过部署飞书信息发送服务&#xff0c;可以方便内网发送信息给外网飞书。 项目代码结构展示&#xff1a; …

医院影像科PACS系统源码,医学影像系统,支持MPR、CPR、MIP、SSD、VR、VE三维图像处理

PACS系统是医院影像科室中应用的一种系统&#xff0c;主要用于获取、传输、存档和处理医学影像。它通过各种接口&#xff0c;如模拟、DICOM和网络&#xff0c;以数字化的方式将各种医学影像&#xff0c;如核磁共振、CT扫描、超声波等保存起来&#xff0c;并在需要时能够快速调取…

FAT 文件系统模拟设计与实现:C语言程序模拟FAT16

实验描述 利用标准C 语言&#xff0c;模拟实现 FAT 16文件系统&#xff0c;支持 FAT 文件系统格式的模拟磁盘卷及其中的目录与文件的存取操作&#xff0c;包括磁盘卷格式化、创建目录、改变当前目录、重命名目录、显示目录、删除目录、创建空文件、重命名文件、写文件、显示文…

gem5 garnet 拓扑结构之port: NI CPU ROUTER L1 L2

简介 有Crossbar&#xff0c;CrossbarGarnet&#xff0c;Mesh_*&#xff0c;MeshDirCorners_XY&#xff0c;Pt2Pt等拓扑结构&#xff0c;我们主要关注mesh-xy。参考是https://www.gem5.org/documentation/general_docs/ruby/interconnection-network/ MESI TWO LEVEL与 mesh …

ASP.NET Core基础之定时任务(二)-Quartz.NET入门

阅读本文你的收获 了解任务调度框架QuartZ.NET的核心构成学会在ASP.NET Core 中使用QuartZ.NET 在项目的开发过程中&#xff0c;难免会遇见需要后台处理的任务&#xff0c;例如定时发送邮件通知、后台处理耗时的数据处理等&#xff0c;上次分享了ASP.NET Core中实现定时任务的…

STM32G4x FLASH 读写(修改HAL库驱动)

主要工作就是把HAL的超时用LL库延时替代&#xff0c;保留了中断擦写模式、轮询等待擦写&#xff0c;待验证哈。 笔者用的芯片为STM32G473CBT6 128KB Flash&#xff0c;开环环境为CUBEMXMDK5.32&#xff0c;因为G4已经没有标准库了&#xff0c;笔者还是习惯使用标准库的开发方式…

Flink 状态管理与容错机制(CheckPoint SavePoint)的关系

一、什么是状态 无状态计算的例子&#xff1a; 例如一个加法算子&#xff0c;第一次输入235那么以后我多次数据23的时候得到的结果都是5。得出的结论就是&#xff0c;相同的输入都会得到相同的结果&#xff0c;与次数无关。 有状态计算的例子&#xff1a; 访问量的统计&#x…

微信小程序开发系列-01创建一个最小的小程序项目

本文讲述了通过微信开发者工具&#xff0c;创建一个新的小程序项目&#xff0c;完全从零开始&#xff0c;不依赖开发者工具的模板。目的是为了更好的理解小程序工程项目的构成。 文章目录 创建一个空项目app.json全局配置pagessitemapLocation app.js 创建一个空项目 打开微信…

【C语言】指针详解(一)

目录 1.内存和地址 1.1内存 1.2如何理解编址 2.指针变量和地址 2.1取地址操作符&#xff08;&&#xff09; 2.2指针变量和解引用操作符&#xff08;*&#xff09; 2.2.1指针变量 2.2.2拆解指针类型 2.2.3解引用操作符 2.3指针变量大小 1.内存和地址 1.1内存 在讲内…