Pooling方法总结(语音识别)

Pooling layer将变长的frame-level features转换为一个定长的向量。

1. Statistics Pooling

链接:http://danielpovey.com/files/2017_interspeech_embeddings.pdf

The default pooling method for x-vector is statistics pooling.

The statistics pooling layer calculates the mean vector µ as well as the second-order statistics as the standard deviation vector σ over frame-level features ht (t = 1, · · · , T ).

2. Attentive Statistics Pooling

链接:https://arxiv.org/pdf/1803.10963.pdf

在一段话中,往往某些帧的帧级特征比其他帧的特征更为独特重要,因此使用attention赋予每帧feature不同的权值。

其中f(.)代表非线性变换,如tanh or ReLU function。

最后将每帧特征加劝求和

3. Self-Attentive pooling

链接:https://danielpovey.com/files/2018_interspeech_xvector_attention.pdf

4. Self Multi-Head Attention pooling

论文:Multi-Resolution Multi-Head Attention in Deep Speaker Embedding | IEEE Conference Publication | IEEE Xplore

5. NetVLAD

论文:

https://arxiv.org/pdf/1902.10107.pdf

https://arxiv.org/pdf/1511.07247.pdf

更详细的解释参考:从VLAD到NetVLAD,再到NeXtVlad - 知乎

6. Learnable Dictionary Encoding (LDE)

论文:https://arxiv.org/pdf/1804.05160.pdf

we introduce two groups of learnable parameters. One is the dictionary component center, noted as µ = {µ1, µ2 · · · µc}. The other one is assigned weights, noted as w.

where the smoothing factor  s_cfor each dictionary center u_cis learnable.

7. Attentive Bilinear Pooling (ABP) - Interspeech 2020

论文:https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1922.pdf

Let H \in \mathbb{R}^{L\times D} be the frame-level feature map captured by the hidden layer below the self-attention layer, where L and D are the number of frames and feature dimension respectively. Then the attention map A \in \mathbb{R}^{K\times L} can be obtained by feeding H into a 1×1 convolutional layer followed by softmax non-linear activation, where K is the number of attention heads. The 1st-order and 2nd-order attentive statistics of H, denoted by µ and \sigma ^{2} , can be computed similar as crosslayer bilinear pooling, which is

where T1(x) is the operation of reshaping x into a vector, and T2(x) includes a signed square-root step and a L2- normalization step.  The output of ABP is the concatenation of µ and \sigma ^{2}

8. Short-time Spectral Pooling (STSP) - ICASSP 2021

​​​​​​​​​​​​​​​​​​​​​​​​​​​​https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414094&tag=1icon-default.png?t=N7T8https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414094&tag=1From a Fourier perspective, statistics pooling only exploits the DC (zero-frequency) components in the spectral domain, whereas STSP incorporates more spectral components besides the DC ones during aggregation and is able to retain richer speaker information.

1. 将卷积层提取到的特征做STFT(Short Time Fourier Transorm),每一个channel得到一个二维频谱图。

2. 计算averaged spectral array

3. 计算second-order spectral statistics

4. 将两个特征进行拼接(C is the number of channels)

9. Multi-head attentive STSP (IEEE TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2022)

One limitation of STSP is that the brute average of the spectrograms along the temporal axis ignores the importance of individual windowed segments when computing the spectral representations. In other words, all segments in a specific spectrogram were treated with equal importance.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/291777.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

node.js mongoose index(索引)

目录 简介 索引类型 单索引 复合索引 文本索引 简介 在 Mongoose 中,索引(Index)是一种用于提高查询性能的数据结构,它可以加速对数据库中文档的检索操作 索引类型 单索引、复合索引、文本索引、多键索引、哈希索引、地理…

【单调栈】LeetCode2334:元素值大于变化阈值的子数组

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 涉及知识点 单调栈 题目 给你一个整数数组 nums 和一个整数 threshold 。 找到长度为 k 的 nums 子数组,满足数组中 每个 元素都 大于 threshold / k 。 请你返回满足要求的 任意 子数组的 大小 。如果没有这…

CentOS 7 Tomcat服务的安装

前提 安装ava https://blog.csdn.net/qq_36940806/article/details/134945175?spm1001.2014.3001.5501 1. 下载 wget https://mirrors.tuna.tsinghua.edu.cn/apache/tomcat/tomcat-9/v9.0.84/bin/apache-tomcat-9.0.84.tar.gzps: 可选择自己需要的版本下载安装https://mirr…

论文中公式怎么降重 papergpt

大家好,今天来聊聊论文中公式怎么降重,希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧,可以借助此类工具: 论文中公式怎么降重 一、引言 在论文撰写过程中,公式是表达学…

Python算法例21 交错正负数

1. 问题描述 给出一个含有正整数和负整数的数组,将其重新排列成一个正负数交错的数组。 2. 问题示例 给出数组[-1,-2,-3,4,5,6],重新排序之后,变成[-1,5,-…

Hive执行计划

Hive提供了explain命令来展示一个查询的执行计划,这个执行计划对于我们了解底层原理,Hive 调优,排查数据倾斜等很有帮助。 使用语法如下: explain query;在 hive cli 中输入以下命令(hive 2.3.7): explain select s…

【已解决】修改了网站的class样式name值,会影响SEO,搜索引擎抓取网站及排名吗?

问题: 修改了网站的class样式name值,会影响搜索引擎抓取网站及排名吗? 解答: 如果你仅仅修改了网站class样式的名称,而没有改变网站的结构和内容,那么搜索引擎通常不会因此而影响它对网站的抓取和排名。但…

「Verilog学习笔记」使用握手信号实现跨时钟域数据传输

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 timescale 1ns/1ns module data_driver(input clk_a,input rst_n,input data_ack,output reg [3:0]data,output reg data_req);reg data_ack_reg_1, data_ack_reg_2 ; reg …

IntelliJ IDEA 2023.3 安装教程

引言 IntelliJ IDEA,通常简称为 IDEA,是由 JetBrains 开发的一款强大的集成开发环境,专为提升开发者的生产力而设计。它支持多种编程语言,包括 Java、Kotlin、Scala 和其他 JVM 语言,同时也为前端开发和移动应用开发提…

用户管理第2节课-idea 2023.2 后端一删除表,从零开始---【本人】

一、清空model文件夹下,所有文件 1.1.1效果如下: 1.1代码内容 package com.daisy.usercenter.model;import lombok.Data;Data public class User {private Long id;private String name;private Integer age;private String email; }二、清空mapper文件…

如何在 openKylin 上使用 ONLYOFFICE 桌面编辑器

文章作者:ajun ONLYOFFICE 桌面编辑器是一款基于依据 AGPL v.3 许可进行分发的开源办公套件。使用这款应用,您无需保持网络连接状态即可处理存储在计算机上的文档。 本文章基于中国根操作系统 openKylin 操作系统,使用软件商店快速安装与手…

阿里云林立翔:基于阿里云 GPU 的 AIGC 小规模训练优化方案

云布道师 本篇文章围绕生成式 AI 技术栈、生成式 AI 微调训练和性能分析、ECS GPU 实例为生成式 AI 提供算力保障、应用场景案例等相关话题展开。 生成式 AI 技术栈介绍 1、生成式 AI 爆发的历程 在 2022 年的下半年,业界迎来了生成式 AI 的全面爆发&#xff0c…