竞赛保研 基于CNN实现谣言检测 - python 深度学习 机器学习

文章目录

  • 1 前言
    • 1.1 背景
  • 2 数据集
  • 3 实现过程
  • 4 CNN网络实现
  • 5 模型训练部分
  • 6 模型评估
  • 7 预测结果
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于CNN实现谣言检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 背景

社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不安定因素,并对经济和社会产生巨大的影响。

2 数据集

本项目所使用的数据是从新浪微博不实信息举报平台抓取的中文谣言数据,数据集中共包含1538条谣言和1849条非谣言。

如下图所示,每条数据均为json格式,其中text字段代表微博原文的文字内容。

在这里插入图片描述

每个文件夹里又有很多新闻文本。

在这里插入图片描述
每个文本又是json格式,具体内容如下:

在这里插入图片描述

3 实现过程

步骤入下:

*(1)解压数据,读取并解析数据,生成all_data.txt
*(2)生成数据字典,即dict.txt
*(3)生成数据列表,并进行训练集与验证集的划分,train_list.txt 、eval_list.txt
*(4)定义训练数据集提供器train_reader和验证数据集提供器eval_reader

import zipfile
import os
import io
import random
import json
import matplotlib.pyplot as plt
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Linear, Embedding
from paddle.fluid.dygraph.base import to_variable#解压原始数据集,将Rumor_Dataset.zip解压至data目录下
src_path="/home/aistudio/data/data36807/Rumor_Dataset.zip" #这里填写自己项目所在的数据集路径
target_path="/home/aistudio/data/Chinese_Rumor_Dataset-master"
if(not os.path.isdir(target_path)):z = zipfile.ZipFile(src_path, 'r')z.extractall(path=target_path)z.close()#分别为谣言数据、非谣言数据、全部数据的文件路径
rumor_class_dirs = os.listdir(target_path+"非开源数据集") # 这里填写自己项目所在的数据集路径
non_rumor_class_dirs = os.listdir(target_path+"非开源数据集")
original_microblog = target_path+"非开源数据集"
#谣言标签为0,非谣言标签为1
rumor_label="0"
non_rumor_label="1"#分别统计谣言数据与非谣言数据的总数
rumor_num = 0
non_rumor_num = 0
all_rumor_list = []
all_non_rumor_list = []#解析谣言数据
for rumor_class_dir in rumor_class_dirs: if(rumor_class_dir != '.DS_Store'):#遍历谣言数据,并解析with open(original_microblog + rumor_class_dir, 'r') as f:rumor_content = f.read()rumor_dict = json.loads(rumor_content)all_rumor_list.append(rumor_label+"\t"+rumor_dict["text"]+"\n")rumor_num +=1
#解析非谣言数据
for non_rumor_class_dir in non_rumor_class_dirs: if(non_rumor_class_dir != '.DS_Store'):with open(original_microblog + non_rumor_class_dir, 'r') as f2:non_rumor_content = f2.read()non_rumor_dict = json.loads(non_rumor_content)all_non_rumor_list.append(non_rumor_label+"\t"+non_rumor_dict["text"]+"\n")non_rumor_num +=1print("谣言数据总量为:"+str(rumor_num))
print("非谣言数据总量为:"+str(non_rumor_num))#全部数据进行乱序后写入all_data.txt
data_list_path="/home/aistudio/data/"
all_data_path=data_list_path + "all_data.txt"
all_data_list = all_rumor_list + all_non_rumor_listrandom.shuffle(all_data_list)#在生成all_data.txt之前,首先将其清空
with open(all_data_path, 'w') as f:f.seek(0)f.truncate() with open(all_data_path, 'a') as f:for data in all_data_list:f.write(data) 
print('all_data.txt已生成')

在这里插入图片描述

接下来就是生成数据字典。


# 生成数据字典
def create_dict(data_path, dict_path):
with open(dict_path, ‘w’) as f:
f.seek(0)
f.truncate()

    dict_set = set()# 读取全部数据with open(data_path, 'r', encoding='utf-8') as f:lines = f.readlines()# 把数据生成一个元组for line in lines:content = line.split('\t')[-1].replace('\n', '')for s in content:dict_set.add(s)# 把元组转换成字典,一个字对应一个数字dict_list = []i = 0for s in dict_set:dict_list.append([s, i])i += 1# 添加未知字符dict_txt = dict(dict_list)end_dict = {"": i}dict_txt.update(end_dict)# 把这些字典保存到本地中with open(dict_path, 'w', encoding='utf-8') as f:f.write(str(dict_txt))print("数据字典生成完成!",'\t','字典长度为:',len(dict_list))

我们可以查看一下dict_txt的内容

在这里插入图片描述

接下来就是数据列表的生成


# 创建序列化表示的数据,并按照一定比例划分训练数据与验证数据
def create_data_list(data_list_path):

    with open(os.path.join(data_list_path, 'dict.txt'), 'r', encoding='utf-8') as f_data:dict_txt = eval(f_data.readlines()[0])with open(os.path.join(data_list_path, 'all_data.txt'), 'r', encoding='utf-8') as f_data:lines = f_data.readlines()i = 0with open(os.path.join(data_list_path, 'eval_list.txt'), 'a', encoding='utf-8') as f_eval,\open(os.path.join(data_list_path, 'train_list.txt'), 'a', encoding='utf-8') as f_train:for line in lines:title = line.split('\t')[-1].replace('\n', '')lab = line.split('\t')[0]t_ids = ""if i % 8 == 0:for s in title:temp = str(dict_txt[s])t_ids = t_ids + temp + ','t_ids = t_ids[:-1] + '\t' + lab + '\n'f_eval.write(t_ids)else:for s in title:temp = str(dict_txt[s])t_ids = t_ids + temp + ','t_ids = t_ids[:-1] + '\t' + lab + '\n'f_train.write(t_ids)i += 1print("数据列表生成完成!")

定义数据读取器


def data_reader(file_path, phrase, shuffle=False):
all_data = []
with io.open(file_path, “r”, encoding=‘utf8’) as fin:
for line in fin:
cols = line.strip().split(“\t”)
if len(cols) != 2:
continue
label = int(cols[1])

            wids = cols[0].split(",")all_data.append((wids, label))if shuffle:if phrase == "train":random.shuffle(all_data)def reader():for doc, label in all_data:yield doc, labelreturn readerclass SentaProcessor(object):def __init__(self, data_dir,):self.data_dir = data_dirdef get_train_data(self, data_dir, shuffle):return data_reader((self.data_dir + "train_list.txt"), "train", shuffle)def get_eval_data(self, data_dir, shuffle):return data_reader((self.data_dir + "eval_list.txt"), "eval", shuffle)def data_generator(self, batch_size, phase='train', shuffle=True):if phase == "train":return paddle.batch(self.get_train_data(self.data_dir, shuffle),batch_size,drop_last=True)elif phase == "eval":return paddle.batch(self.get_eval_data(self.data_dir, shuffle),batch_size,drop_last=True)else:raise ValueError("Unknown phase, which should be in ['train', 'eval']")

总之在数据处理这一块需要我们注意的是一共生成以下的几个文件。

在这里插入图片描述

4 CNN网络实现

接下来就是构建以及配置卷积神经网络(Convolutional Neural Networks,
CNN),开篇也说了,其实这里有很多模型的选择,之所以选择CNN是因为让我们熟悉CNN的相关实现。 输入词向量序列,产生一个特征图(feature
map),对特征图采用时间维度上的最大池化(max pooling over
time)操作得到此卷积核对应的整句话的特征,最后,将所有卷积核得到的特征拼接起来即为文本的定长向量表示,对于文本分类问题,将其连接至softmax即构建出完整的模型。在实际应用中,我们会使用多个卷积核来处理句子,窗口大小相同的卷积核堆叠起来形成一个矩阵,这样可以更高效的完成运算。另外,我们也可使用窗口大小不同的卷积核来处理句子。具体的流程如下:

在这里插入图片描述
首先我们构建单层CNN神经网络。

#单层class SimpleConvPool(fluid.dygraph.Layer):def __init__(self,num_channels, # 通道数num_filters,  # 卷积核数量filter_size,  # 卷积核大小batch_size=None): # 16super(SimpleConvPool, self).__init__()self.batch_size = batch_sizeself._conv2d = Conv2D(num_channels = num_channels,num_filters = num_filters,filter_size = filter_size,act='tanh')self._pool2d = fluid.dygraph.Pool2D(pool_size = (150 - filter_size[0]+1,1),pool_type = 'max',pool_stride=1)def forward(self, inputs):# print('SimpleConvPool_inputs数据纬度',inputs.shape) # [16, 1, 148, 128]x = self._conv2d(inputs)x = self._pool2d(x)x = fluid.layers.reshape(x, shape=[self.batch_size, -1])return xclass CNN(fluid.dygraph.Layer):def __init__(self):super(CNN, self).__init__()self.dict_dim = train_parameters["vocab_size"]self.emb_dim = 128   #emb纬度self.hid_dim = [32]  #卷积核数量self.fc_hid_dim = 96  #fc参数纬度self.class_dim = 2    #分类数self.channels = 1     #输入通道数self.win_size = [[3, 128]]  # 卷积核尺寸self.batch_size = train_parameters["batch_size"] self.seq_len = train_parameters["padding_size"]self.embedding = Embedding( size=[self.dict_dim + 1, self.emb_dim],dtype='float32', is_sparse=False)self._simple_conv_pool_1 = SimpleConvPool(self.channels,self.hid_dim[0],self.win_size[0],batch_size=self.batch_size)self._fc1 = Linear(input_dim = self.hid_dim[0],output_dim = self.fc_hid_dim,act="tanh")self._fc_prediction = Linear(input_dim = self.fc_hid_dim,output_dim = self.class_dim,act="softmax")def forward(self, inputs, label=None):emb = self.embedding(inputs) # [2400, 128]# print('CNN_emb',emb.shape)  emb = fluid.layers.reshape(   # [16, 1, 150, 128]emb, shape=[-1, self.channels , self.seq_len, self.emb_dim])# print('CNN_emb',emb.shape)conv_3 = self._simple_conv_pool_1(emb)fc_1 = self._fc1(conv_3)prediction = self._fc_prediction(fc_1)if label is not None:acc = fluid.layers.accuracy(prediction, label=label)return prediction, accelse:return prediction

接下来就是参数的配置,不过为了在模型训练过程中更直观的查看我们训练的准确率,我们首先利用python的matplotlib.pyplt函数实现一个可视化图,具体的实现如下:


def draw_train_process(iters, train_loss, train_accs):
title=“training loss/training accs”
plt.title(title, fontsize=24)
plt.xlabel(“iter”, fontsize=14)
plt.ylabel(“loss/acc”, fontsize=14)
plt.plot(iters, train_loss, color=‘red’, label=‘training loss’)
plt.plot(iters, train_accs, color=‘green’, label=‘training accs’)
plt.legend()
plt.grid()
plt.show()

5 模型训练部分


def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor( data_dir="data/")train_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"],phase='train',shuffle=True)model = CNN()sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["adam"],parameter_list=model.parameters())steps = 0Iters,total_loss, total_acc = [], [], []for eop in range(train_parameters["epoch"]):for batch_id, data in enumerate(train_data_generator()):steps += 1#转换为 variable 类型doc = to_variable(np.array([np.pad(x[0][0:train_parameters["padding_size"]],  #对句子进行padding,全部填补为定长150(0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"])) # 用  的id 进行填补for x in data]).astype('int64').reshape(-1))#转换为 variable 类型label = to_variable(np.array([x[1] for x in data]).astype('int64').reshape(train_parameters["batch_size"], 1))model.train() #使用训练模式prediction, acc = model(doc, label)loss = fluid.layers.cross_entropy(prediction, label)avg_loss = fluid.layers.mean(loss)avg_loss.backward()sgd_optimizer.minimize(avg_loss)model.clear_gradients()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(avg_loss.numpy()[0])total_acc.append(acc.numpy()[0])print("eop: %d, step: %d, ave loss: %f, ave acc: %f" %(eop, steps,avg_loss.numpy(),acc.numpy()))if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)print('save model to: ' + save_path)fluid.dygraph.save_dygraph(model.state_dict(),save_path)# breakdraw_train_process(Iters, total_loss, total_acc)

训练的过程以及训练的结果如下:

在这里插入图片描述

6 模型评估


def to_eval():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
processor = SentaProcessor(data_dir=“data/”) #写自己的路径

        eval_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"],phase='eval',shuffle=False)model_eval = CNN() #示例化模型model, _ = fluid.load_dygraph("data//save_dir_180.pdparams") #写自己的路径model_eval.load_dict(model)model_eval.eval() # 切换为eval模式total_eval_cost, total_eval_acc = [], []for eval_batch_id, eval_data in enumerate(eval_data_generator()):eval_np_doc = np.array([np.pad(x[0][0:train_parameters["padding_size"]],(0, train_parameters["padding_size"] -len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"]))for x in eval_data]).astype('int64').reshape(-1)eval_label = to_variable(np.array([x[1] for x in eval_data]).astype('int64').reshape(train_parameters["batch_size"], 1))eval_doc = to_variable(eval_np_doc)eval_prediction, eval_acc = model_eval(eval_doc, eval_label)loss = fluid.layers.cross_entropy(eval_prediction, eval_label)avg_loss = fluid.layers.mean(loss)total_eval_cost.append(avg_loss.numpy()[0])total_eval_acc.append(eval_acc.numpy()[0])print("Final validation result: ave loss: %f, ave acc: %f" %(np.mean(total_eval_cost), np.mean(total_eval_acc) ))   

评估准确率如下:

在这里插入图片描述

7 预测结果


# 获取数据
def load_data(sentence):
# 读取数据字典
with open(‘data/dict.txt’, ‘r’, encoding=‘utf-8’) as f_data:
dict_txt = eval(f_data.readlines()[0])
dict_txt = dict(dict_txt)
# 把字符串数据转换成列表数据
keys = dict_txt.keys()
data = []
for s in sentence:
# 判断是否存在未知字符
if not s in keys:
s = ‘’
data.append(int(dict_txt[s]))
return data

train_parameters["batch_size"] = 1
lab = [ '谣言', '非谣言']with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):data = load_data('兴仁县今天抢小孩没抢走,把孩子母亲捅了一刀,看见这车的注意了,真事,车牌号辽HFM055!!!!!赶紧散播! 都别带孩子出去瞎转悠了 尤其别让老人自己带孩子出去 太危险了 注意了!!!!辽HFM055北京现代朗动,在各学校门口抢小孩!!!110已经 证实!!全市通缉!!')data_np = np.array(data)data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)infer_np_doc = to_variable(data_np)model_infer = CNN()model, _ = fluid.load_dygraph("data/save_dir_900.pdparams")model_infer.load_dict(model)model_infer.eval()result = model_infer(infer_np_doc)print('预测结果为:', lab[np.argmax(result.numpy())])

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/292492.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL---Zeppeline前驱记录与后驱记录查询

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…

Latex生成的PDF中加入书签/Navigation/导航

本文参考:【Latex学习】在生成pdf中加入书签/目录/提纲_latex 书签-CSDN博客 (这篇文章写的真的太棒了!非常推荐) 题外话,我的碎碎念,这也是我如何提高搜索能力的办法:想在Latex生成的PDF中加入…

Java代码审计Mybatis注入文件上传下载读取(非常详细!!)

目录 0x00 前言 0x01 Mybatis注入审计 - 若依(Ruoyi)后台管理系统 4.6.0 1、项目介绍与部署 - Ruoyi 2、若依 Ruoyi - Mybatis注入 - 代码审计 3、代审常搜词 - Java SQL 注入 0x02 文件上传漏洞审计 - Inxedu && Tmall 1、项目介绍与部署…

大规模采用奇点临近?Web3应用爆发离不开这个“支撑”赛道

作者|Jason Jiang 数据是当今世界最具价值的资源,也是数字掘金的必争之地。尽管Web3迄今仍有诸多争议,但随着铭文、Gamefi、DeFi等链上生态的多样化发展,我们正身处Web3应用爆发的洪流之中,区块链数据赛道也因此备受关…

Qt 多线程用法

文章目录 开发平台QThread 类 moveToThreadQtConcurrent::run QFutureWatcherQThreadPool QRunnable 开发平台 项目说明OSwin10 x64Qt6.6compilermsvc2022构建工具cmake QThread 类 moveToThread 写一个简单的例子吧,比较容易理解,方便入门. 也可以看出这种方式,对于线程…

基于SSM框架的二手房中介管理系统+vue论文

摘 要 如今社会上各行各业,都在用属于自己专用的软件来进行工作,互联网发展到这个时候,人们已经发现离不开了互联网。互联网的发展,离不开一些新的技术,而新技术的产生往往是为了解决现有问题而产生的。针对于二手房信…

达梦到达梦的外部链接dblink(DM-DM DBLINK)

一. 使用场景: 部链接对象(LINK)是 DM 中的一种特殊的数据库实体对象,它记录了远程数据库的连接和路径信息,用于建立与远程数据的联系。通过多台数据库主库间的相互通讯,用户可以透明地操作远程数据库的数…

25年老品牌 美好蕴育润康守护孕期妈妈的健康之路

孕期是每一位女性人生中最为特殊的阶段。每一位妈妈都期待着健康、快乐的度过每一天。然而,随着孕周的增加,孕期的不适和困扰也随之而来。孕吐、腰酸背痛、便秘等孕期症状让许多妈妈倍感疲惫和焦虑。在这个关键时刻,美好蕴育润康作为25年的老…

JSON Web Token JWT几种简单的绕过方法

JWT结构 JSON Web Token(JWT)是一个非常轻巧的规范。 这个规范允许我们使用JWT在用户和服务器之间传递安全可靠的信息。 JWT常被用于前后端分离,可以和Restful API配合使用,常用于构建身份认证机制 如图为JWT加密后的示例&…

万德高科携手航天科技AIRIOT打造智慧能碳管理平台, 助力碳达峰碳中和

“十四五”时期,我国生态文明建设进入了以降碳为重点战略方向、推动减污降碳协同增效、促进经济社会发展全面绿色转型、实现生态环境质量改善由量变到质变的关键时期。“实施数字化赋能行动”,聚焦能源管理、节能降碳、低碳能力等典型场景,推…

【前缀和】【单调栈】LeetCode2281:巫师的总力量和

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 涉及知识点 单调栈 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 题目 作为国王的统治者,你有一支巫师军队听你指挥。 给你一个下标从 0 开始的整数数组 strength &…

CH06_访问数据结构

Visitor 模式 访问者模式(Visitor),表示一个作用于某对象结构中的各元素的操作。它使你可以在不改变各元素的类的提前下定义作用于这些元素的新操作。 类图 说明 Visitor(访问者) Visitor角色负责对数据结构中每一个…