【机器学习】【线性回归】梯度下降

文章目录

    • @[toc]
      • 数据集
      • 实际值
      • 估计值
      • 估计误差
      • 代价函数
      • 学习率
      • 参数更新
      • `Python`实现
      • 线性拟合结果
      • 代价结果

数据集

( x ( i ) , y ( i ) ) , i = 1 , 2 , ⋯ , m \left(x^{(i)} , y^{(i)}\right) , i = 1 , 2 , \cdots , m (x(i),y(i)),i=1,2,,m


实际值

y ( i ) y^{(i)} y(i)


估计值

h θ ( x ( i ) ) = θ 0 + θ 1 x ( i ) h_{\theta}{\left(x^{(i)}\right)} = \theta_{0} + \theta_{1}{x^{(i)}} hθ(x(i))=θ0+θ1x(i)


估计误差

h θ ( x ( i ) ) − y ( i ) h_{\theta}{\left(x^{(i)}\right)} - y^{(i)} hθ(x(i))y(i)


代价函数

J ( θ ) = J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 = 1 2 m ∑ i = 1 m ( θ 0 + θ 1 x ( i ) − y ( i ) ) 2 J(\theta) = J(\theta_{0} , \theta_{1}) = \cfrac{1}{2m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}{\left(x^{(i)}\right)} - y^{(i)}\right)^{2}} = \cfrac{1}{2m} \displaystyle\sum\limits_{i = 1}^{m}{\left(\theta_{0} + \theta_{1}{x^{(i)}} - y^{(i)}\right)^{2}} J(θ)=J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2=2m1i=1m(θ0+θ1x(i)y(i))2


学习率

  • α \alpha α是学习率,一个大于 0 0 0的很小的经验值,决定代价函数下降的程度

参数更新

Δ θ j = ∂ ∂ θ j J ( θ 0 , θ 1 ) \Delta{\theta_{j}} = \cfrac{\partial}{\partial{\theta_{j}}} J(\theta_{0} , \theta_{1}) Δθj=θjJ(θ0,θ1)

θ j : = θ j − α Δ θ j = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) \theta_{j} := \theta_{j} - \alpha \Delta{\theta_{j}} = \theta_{j} - \alpha \cfrac{\partial}{\partial{\theta_{j}}} J(\theta_{0} , \theta_{1}) θj:=θjαΔθj=θjαθjJ(θ0,θ1)

[ θ 0 θ 1 ] : = [ θ 0 θ 1 ] − α [ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] \left[ \begin{matrix} \theta_{0} \\ \theta_{1} \end{matrix} \right] := \left[ \begin{matrix} \theta_{0} \\ \theta_{1} \end{matrix} \right] - \alpha \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] [θ0θ1]:=[θ0θ1]α θ0J(θ0,θ1)θ1J(θ0,θ1)

[ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] = [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x ( i ) ] = [ 1 m ∑ i = 1 m e ( i ) 1 m ∑ i = 1 m e ( i ) x ( i ) ] e ( i ) = h θ ( x ( i ) ) − y ( i ) \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}{\left(x^{(i)}\right)} - y^{(i)}\right)} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}{\left(x^{(i)}\right)} - y^{(i)}\right) x^{(i)}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)}} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)} x^{(i)}} \end{matrix} \right] \kern{2em} e^{(i)} = h_{\theta}{\left(x^{(i)}\right)} - y^{(i)} θ0J(θ0,θ1)θ1J(θ0,θ1) = m1i=1m(hθ(x(i))y(i))m1i=1m(hθ(x(i))y(i))x(i) = m1i=1me(i)m1i=1me(i)x(i) e(i)=hθ(x(i))y(i)

[ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] = [ 1 m ∑ i = 1 m e ( i ) 1 m ∑ i = 1 m e ( i ) x ( i ) ] = [ 1 m ( e ( 1 ) + e ( 2 ) + ⋯ + e ( m ) ) 1 m ( e ( 1 ) + e ( 2 ) + ⋯ + e ( m ) ) x ( i ) ] = 1 m [ 1 1 ⋯ 1 x ( 1 ) x ( 2 ) ⋯ x ( m ) ] [ e ( 1 ) e ( 2 ) ⋮ e ( m ) ] = 1 m X T e = 1 m X T ( X θ − y ) \begin{aligned} \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] &= \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)}} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)} x^{(i)}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \left(e^{(1)} + e^{(2)} + \cdots + e^{(m)}\right) \\ \cfrac{1}{m} \left(e^{(1)} + e^{(2)} + \cdots + e^{(m)}\right) x^{(i)} \end{matrix} \right] \\ &= \cfrac{1}{m} \left[ \begin{matrix} 1 & 1 & \cdots & 1 \\ x^{(1)} & x^{(2)} & \cdots & x^{(m)} \end{matrix} \right] \left[ \begin{matrix} e^{(1)} \\ e^{(2)} \\ \vdots \\ e^{(m)} \end{matrix} \right] = \cfrac{1}{m} X^{T} e = \cfrac{1}{m} X^{T} (X \theta - y) \end{aligned} θ0J(θ0,θ1)θ1J(θ0,θ1) = m1i=1me(i)m1i=1me(i)x(i) = m1(e(1)+e(2)++e(m))m1(e(1)+e(2)++e(m))x(i) =m1[1x(1)1x(2)1x(m)] e(1)e(2)e(m) =m1XTe=m1XT(y)

  • 由上述推导得

Δ θ = 1 m X T e \Delta{\theta} = \cfrac{1}{m} X^{T} e Δθ=m1XTe

θ : = θ − α Δ θ = θ − α 1 m X T e \theta := \theta - \alpha \Delta{\theta} = \theta - \alpha \cfrac{1}{m} X^{T} e θ:=θαΔθ=θαm1XTe


Python实现

import numpy as np
import matplotlib.pyplot as pltx = np.array([4, 3, 3, 4, 2, 2, 0, 1, 2, 5, 1, 2, 5, 1, 3])
y = np.array([8, 6, 6, 7, 4, 4, 2, 4, 5, 9, 3, 4, 8, 3, 6])m = len(x)x = np.c_[np.ones([m, 1]), x]
y = y.reshape(m, 1)  # 转成列向量
theta = np.zeros([2, 1])alpha = 0.01
iter_cnt = 1000  # 迭代次数
cost = np.zeros([iter_cnt])  # 代价数据for i in range(iter_cnt):h = x.dot(theta)  # 估计值error = h - y  # 误差值cost[i] = 1 / 2 * m * error.T.dot(error)  # 代价值# 更新参数delta_theta = 1 / m * x.T.dot(error)theta -= alpha * delta_theta# 线性拟合结果
plt.scatter(x[:, 1], y, c='blue')
plt.plot(x[:, 1], h, 'r-')
plt.show()# 代价结果
plt.plot(cost)
plt.show()

线性拟合结果

1


代价结果

2


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/293903.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模型集成系列:Bagging和Boosting方法

模型集成系列:Bagging和Boosting方法 本文讨论Bagging和Boosting。这些(Bagging和Boosting)是全世界数据科学家常用的术语。但是这些术语究竟是什么意思,它们如何帮助数据科学家。我们将学习关于bagging和boosting以及它们在实践…

STM32微控制器在HC-SR501红外感应模块中的能耗优化策略研究

一、 引言 能耗优化是嵌入式系统设计中一个重要的考虑因素,特别是在电池供电的应用中。在使用HC-SR501红外感应模块时,能耗优化策略对于延长电池寿命、提高系统性能至关重要。本文将阐述基于STM32微控制器的HC-SR501红外感应模块能耗优化策略研究。 二、…

Win7如何修改MAC地址

MAC地址,又叫做物理地址、硬件地址,是用来定义网络设备的位置,一般情况下,MAC地址在网卡中是固定的,但不排除有人手动去修改自己的MAC地址。win7如何修改MAC地址?其实修改MAC地址的方法很简单,可以通过硬件…

如何使用不同的纹理贴图制作逼真的 3D 图形?

在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 在过去的很多年里,我一直在视觉效果行业工作,…

大数据开发职业介绍

........................................................................................................................................................... 大数据开发转正 ...................................................................................…

elasticsearch-py 8.x的一些优势

​ 早在 2022 年 2 月,当 Elasticsearch 8.0 发布时,Python 客户端也发布了 8.0 版本。它是对 7.x 客户端的部分重写,并带有许多不错的功能(如下所述),但也带有弃用警告和重大更改。今天,客户端的 7.17 版本仍然相对流行,每月下载量超过 100 万次,占 8.x 下载量的 ~50…

uniapp纯CSS实现圆形进度条组件

uniapp纯CSS实现圆形进度条组件。圆形进度条组件组合做一个步骤进度组件是非常常见。 纯 CSS 实现圆形进度条组件有以下几个好处: 轻量级:由于纯 CSS 实现,无需额外的 JavaScript 或图像资源,所以组件的文件大小相对较小&#xf…

Python生成圣诞节词云-代码案例剖析【第17篇—python圣诞节系列】

文章目录 ❄️Python制作圣诞树词云-中文🐬展示效果🌸代码🌴代码剖析 ❄️Python制作圣诞树词云-英文🐬展示效果🌸代码🌴代码剖析 🎅圣诞节快乐! ❄️Python制作圣诞树词云-中文 &a…

首涂第二十八套_新版海螺M3多功能苹果CMSv10自适应全屏高端模板

首涂第二十八套_新版海螺M3多功能苹果cmsv10自适应全屏高端模板 多功能苹果cmsv10自适应全屏高端模板开源授权版 这是一款带“主题管理系统”的模板。这是一款好模板。 花大价钱收购了海螺这两个模板的版权。官方正品,非盗版。关闭域名授权 后台自定义菜单 请把…

【大模型实践】基于文心一言的对话模型设计

文心一言(英文名:ERNIE Bot)是百度全新一代知识增强大语言模型,文心大模型家族的新成员,能够与人对话互动、回答问题、协助创作,高效便捷地帮助人们获取信息、知识和灵感。文心一言从数万亿数据和数千亿知识…

使用GitZip下载GitHub指定文件

目录 一、GitZip二、安装GitZip三、链接GitHub四、检验是否安装成功五、总结 一、GitZip GitZip是一个非常实用的浏览器插件,它主要有以下几个优点: 下载指定文件:在我们浏览Github时,如果只想下载某个子目录的内容,…

Layui 下拉select多选实现

1. html <div id"mo_deptment"></div> 2.引用 <script src"~/layuiadmin/layui/xm-select.js"></script>3.设置全局变量存储控件 var mo_deptmentSelect; 4.layui.use 中初始化 4.1 列表数据 var mo_deptmentdata [ …