MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类

系列文章目录


前言

此示例说明如何使用深度学习对移动设备摄像头采集的图像进行分类。

在您的移动设备上安装和设置 MATLAB® Mobile™。然后,从 MATLAB Mobile 的“设置”登录 MathWorks® Cloud。

在您的设备上启动 MATLAB Mobile。


一、在您的设备上安装 MATLAB Mobile

Apple 的 App Store® 和 Google Play® 中提供了 MATLAB® Mobile™ App。

要在您的设备上下载 MATLAB Mobile App,请执行以下操作:

  1. 在您的设备上启动 App Store 或 Google Play。

  2. 使用关键字 MATLAB Mobile 在商店中搜索。

  3. 要开始在您的设备上免费安装 App,请执行以下操作:

    • 在 Android 设备上:点击安装

    • 在 Apple 设备上:点击下载图标。在某些情况下,iTunes 应用程序可能要求您输入密码来完成交易。

  4. 安装完成后,您可以点击打开以在您的设备上启动 MATLAB Mobile。

对于 Apple 设备,您还可以从您计算机上的 iTunes 软件访问 App Store。

至此页面下载并安装 MATLAB Support Package for Android Sensors 工具箱。

MATLAB Support Package for Android Sensors - File Exchange - MATLAB Central (mathworks.cn)icon-default.png?t=N7T8https://ww2.mathworks.cn/matlabcentral/fileexchange/47618-matlab-support-package-for-android-sensors

二、创建与手机摄像头的连接

命令屏幕上,创建一个 mobiledev 对象 m

m = mobiledev
m = 
mobiledev with properties:Connected: 1AvailableCameras: {'back' 'front'}Logging: 0InitialTimestamp: ''AccelerationSensorEnabled: 0
AngularVelocitySensorEnabled: 0MagneticSensorEnabled: 0OrientationSensorEnabled: 0PositionSensorEnabled: 0Supported functions

AvailableCameras 属性指示该设备具有 'back' 和 'front' 摄像头。创建与 'back' 摄像头的连接。

cam = camera(m,'back')
cam = Camera with properties:Name: 'back'AvailableResolutions: {'640x480'  '1280x720'}Resolution: '640x480'Flash: 'off'Autofocus: 'on'

摄像头属性提供关于图像分辨率、自动对焦和闪光灯设置的信息。

三、加载预训练网络并采集图像

需要至此页面下载安装 Deep Learning Toolbox Model for GoogLeNet Network 工具箱

https://ww2.mathworks.cn/matlabcentral/fileexchange/64456-deep-learning-toolbox-model-for-googlenet-networkicon-default.png?t=N7T8https://ww2.mathworks.cn/matlabcentral/fileexchange/64456-deep-learning-toolbox-model-for-googlenet-network

命令屏幕上,使用 Deep Learning Toolbox™ 加载预训练的 GoogLeNet 网络。

nnet = googlenet;

使用 snapshot 函数和手动快门模式从摄像头采集单个图像。摄像头预览打开后,您可以移动您的移动设备来捕获所需的视野。对于本例,捕获要分类的对象的图像。准备好后,按快门按钮采集图像。

img = snapshot(cam,'manual');

 调整图像大小以匹配网络的输入大小。GoogLeNet 的输入大小是 224×224。使用 image 在 MATLABMobile 中预览图像。

img = imresize(img,[224,224]);
image(img)

四、分类并显示采集的图像

使用来自 Deep Learning Toolbox 的 classify 对所采集图像中的对象进行分类。

label = classify(nnet,img)
label = categoricalcoffee mug 

此对象被分类为咖啡杯。使用标签作为图窗标题预览图像。

image(img)
title(char(label));

 

五、编写函数对图像进行分类

您可以在 MATLABMobile 中编写一个函数来执行前面所有步骤,以对图像进行分类。

文件屏幕上,在 MATLABDrive™ 文件夹中创建一个新脚本。将文件命名为 camnet.m。按照以下方式定义 camnet 函数并保存文件。

function value = camnet(cam,nnet)img = snapshot(cam,'manual');pic = imresize(img,[224,224]);value = classify(nnet,pic);image(pic)title(char(value))
end

命令屏幕上,创建 mobiledev 对象。然后创建 camera 对象。

m = mobiledev;
cam = camera(m,'front');

 加载预训练的 GoogLeNet 网络。

nnet = googlenet;

 调用 camnet 函数。

label = camnet(cam,nnet)

 摄像头预览会在您的移动设备上打开。移动您的移动设备摄像头,指向您要分类的对象。按快门按钮捕获图像。捕获图像后,您可以查看图窗。图窗标题显示对象的预测标签。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/294293.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[JS设计模式]Flyweight Pattern

Flyweight pattern 享元模式是一种结构化的设计模式,主要用于产生大量类似对象而内存又有限的场景。享元模式能节省内存。 假设一个国际化特大城市SZ;它有5个区,分别为nanshan、futian、luohu、baoan、longgang;每个区都有多个图…

MyBatis关联查询(二、一对多查询)

MyBatis关联查询(二、一对多查询) 需求:查询所有用户信息及用户关联的账户信息。 分析:用户信息和他的账户信息为一对多关系,并且查询过程中如果用户没有账户信息,此时也要将用户信息查询出来&#xff0c…

C++20形式的utf-8字符串转宽字符串,不依赖编译器编码形式

默认的char[]编码都是要看编译器编译选项的,你选了ANSI那它就是ANSI,你选了UTF8那它就是UTF8. 【注意:经典DevC只支持ANSI编码(痛苦);上图是小熊猫DevC,则有这个选项】 这一点对我的代码造成了…

vp与vs联合开发-网口通信(socket)

Socket通信是一种在网络中进行进程间通信的机制。它使用了一种称为套接字(Socket)的编程接口,通过该接口可以创建、连接、发送和接收数据等操作。 Socket通信中,有两个主要的角色:服务器和客户端。服务器负责监听指定…

十三、W5100S/W5500+RP2040之MicroPython开发<MQTT新版OneNET示例>

文章目录 1. 前言2. 平台操作流程3. WIZnet以太网芯片4. 示例讲解以及使用4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 烧录验证 5. 注意事项6. 相关链接 1. 前言 在这个智能硬件和物联网时代,MicroPython和树莓派PICO正以其独特的优势引领着嵌入式开发…

【基于激光雷达的路沿检测用于自动驾驶的真值标注】

文章目录 概要主要贡献内容概述实验小结 概要 论文地址:https://arxiv.org/pdf/2312.00534.pdf 路沿检测在自动驾驶中扮演着重要的角色,因为它能够帮助车辆感知道可行驶区域和不可行驶区域。为了开发和验证自动驾驶功能,标注的数据是必不可…

VideoPoet: Google的一种用于零样本视频生成的大型语言模型

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

DPDK单步跟踪(3)-如何利用visual studio 2019和visual gdb来单步调试dpdk

准备工作 因为时间的关系,我想到哪说到哪,可能没那么高的完成度。 但其实有心的人,看到这个标题,就关了本文自己能做了。 why和how to build debug version DPDK,见前两篇。这里我们准备开始。 首先,你有一台linux机…

二维码智慧门牌管理系统升级:安全与便捷并存

文章目录 前言一、系统升级与用户操作记录二、展望与智能门禁未来三、智能科技为未来铺路 前言 科技与门禁系统演进 随着科技的飞速发展,智能门牌系统成为建筑物不可或缺的一部分。其中,二维码智慧门牌管理系统以其独特优势逐渐受到关注。它不仅提升了出…

华为鸿蒙(HarmonyOS):连接一切,智慧无限

华为鸿蒙是一款全场景、分布式操作系统,旨在构建一个真正统一的硬件生态系统。该操作系统于2019年8月首次发布,并被设计为可以应用于各种设备,包括智能手机、智能手表、智能电视、车载系统等多种智能设备。 推荐一套最新版的鸿蒙4.0开发教程 …

构建创新学习体验:企业培训系统技术深度解析

企业培训系统在现代企业中发挥着越来越重要的作用,它不仅仅是传统培训的延伸,更是技术创新的结晶。本文将深入探讨企业培训系统的关键技术特点,并通过一些简单的代码示例,展示如何在实际项目中应用这些技术。 1. 前端技术&#…

MyBatis见解3

8.MyBatis的关联查询 8.3.一对多查询 需求:查询所有用户信息及用户关联的账户信息。 分析:用户信息和他的账户信息为一对多关系,并且查询过程中如果用户没有账户信息,此时也要将用户信息查询出来,此时左外连接查询比…