JUC AQS ReentrantLock源码分析

AQS

java.util.concurrent.locks.AbstractQueuedSynchronizer

请添加图片描述

AQS (抽象队列同步器): AbstractQueuedSynchronizer 是什么

  • 来自jdk1.5,是用来实现锁或者其他同步器组件的公共基础部分的抽象实现,是重量级基础框架以及JUC的基石,主要用于解决锁分配给谁的问题
  • 整体是通过一个抽象的FIFO队列来完成资源获取线程的排队工作,并通过一个int变量表示持有锁的状态
  • 锁是面向开发人员的,而同步器是JDK统一规范并简化了锁的实现,并抽象出来的公共基础部分,屏蔽了同步状态、同步队列的管理,和线程排队、通知、唤醒等机制

和AQS相关的类:

  • ReentranLock
  • CountDownLatch
  • ReentrantReadWriteLock
  • Semaphore

请添加图片描述

AQS 原理

  • 整体是通过一个抽象的FIFO队列来完成资源获取线程的排队工作,并通过一个int变量表示持有锁的状态
  • 如果共享资源被占用,就需要阻塞唤醒机制来保证锁的分配,这个机制主要是通过CLH队列的变体实现的,将暂时获取锁失败的线程,以及自身的等待状态封装成队列的节点对象node,放入队列中
  • 通过CAS、自旋等维护共享资源的状态,达到并发效果
  • 内部结构:
    • 队列的 头指针、尾指针
    • int 类型的同步状态的标识 state ,默认值0代表没有被占用,大于等于1代表被占用
    • 内部类node,将暂时获取锁失败的线程,以及自身的等待状态封装成队列的节点对象node
      • int类型变量 waitStatus 当前节点再队列中的等待状态,默认为0
        • 1表示线程被取消
        • -1表示后继线程需要被唤醒
        • -2表示等待conditon唤醒
        • -3表示共享式(锁分为共享和独占)同步状态获取将无条件地传播下去
      • 前一个节点的指针和后一个节点的指针
      • 请求线程
ReentrantLock
  • 是lock的实现类,构造器可以传入一个boolean值,true创建的就是公平锁,false为非公平锁,默认为非公平锁
  • 内部有一个静态内部类sync,继承了 AbstractQueuedSynchronizer ,用于锁的各种操作
lock
  • 当调用 lock 方法加锁时

    • 非公平锁,会先尝试通过cas 比较并交换的操作把 states 的状态值从 0更新为1,如果更新成功,就把持有锁的线程设置为自己
    • 更新失败就和公平锁一样,执行 AQS 的 acquire方法
    • 除此之外,公平和非公平锁的区别就是,再获取同步状态时,公平锁需要判断等待队列中再自己之前是否存在有效节点,如果有公平锁就需要排队
    • 因为公平锁讲究先到先得,线程再获取锁时,如果这个锁的等待队列已经有线程再等待,当前线程就会直接进入等待队列
    • 而非公平锁,不管是否有队列,如果可以获取锁,就会立刻占有锁的对象,所以第一个在队列里排队的线程苏醒后,仍然需要去竞争锁,且不一定能竞争到锁

acquire 方法源码:

    public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();}

acquire

  • 调用lock方法加锁,除非是非公平锁能直接拿到锁,其他情况下都是在调用acquire 方法

  • acquire 方法分为三种情况:

  • 调用 tryAcquire 方法尝试加锁;

  • 加锁失败,调用 addWaite方法,进入等待队列;

  • 进入队列之后,调用acquireQueued 方法,线程进入阻塞状态,等待唤醒后才能继续执行

非公平锁的 tryAcquire 方法源码

  • AQS类的tryAcquire方法只是做了规范,方法内直接抛出异常,所以这个方法需要由子类去实现

  • 非公平锁的tryAcquire 方法会先判断锁的状态state是否为0,为0说明没有被其他线程占用,就立即使用cas操作变更state为1,变更成功就把持有锁的线程设置为自己,变更失败就表示加锁失败

  • 如果锁的状态为1,说明锁已经被占用,在比较当前线程和持有锁的线程是否一致,不一致就加锁失败

  • tryAcquire 方法公平和非公平锁的区别是

    • 再获取同步状态时,公平锁需要判断等待队列中再自己之前是否存在有效节点,如果有公平锁就需要排队
    • 非公平锁,不管是否有队列,如果可以获取锁,就会立刻占有锁的对象
  • 如果 tryAcquire 方法抢锁失败,就需要调用 addWaiter加入到等待队列

        final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();//先判断锁的状态state是否为0,为0说明没有被其他线程占用if (c == 0) {//为0说明没有被其他线程占用,使用cas操作变更state为1if (compareAndSetState(0, acquires)) {//变更成功就把持有锁的线程设置为自己,变更失败就表示加锁失败setExclusiveOwnerThread(current);return true;}}//如果锁的状态为1,说明锁已经被占用,在比较当前线程和持有锁的线程是否一致else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}//加锁失败return false;}

addWaiter(Node.EXCLUSIVE) 加入等待队列 源码:

  • Node.EXCLUSIVE 代表的是独占的节点,也就是排他锁
  • acquire 方法的 addWaiter 方法创建的是独占的node节点,节点中封装的是当前线程
  • addWaiter方法首先要判断 链表的尾指针是否为空
    • 如果为空,就需要初始化链表,首先new一个空的哨兵节点,这个节点并不存储信息,只是作为占位使用,然后设置哨兵节点为头节点,然后把头节点赋值给尾节点
    • 当链表初始化完成后,或者链表中已经由其他节点时,就用CAS操作把新节点加入到链表尾部,如果节点加入链表失败就进行下一次循环,直到把节点加入成功为止
    • 如果不为空,直接用CAS操作把新节点加入到链表尾部,同样如果节点加入链表失败就进行循环,直到把节点加入成功为止
  • 节点成功入队后,需要调用acquireQueued 方法
private Node addWaiter(Node mode) {//node节点中封装的是当前线程Node node = new Node(Thread.currentThread(), mode);//尾指针Node pred = tail;//链表的尾指针是否为空if (pred != null) {node.prev = pred;//如果加入失败,就会走下面的循环,直到把节点加入链表为止if (compareAndSetTail(pred, node)) {pred.next = node;return node;}}enq(node);return node;
}private Node enq(final Node node) {for (;;) {//尾节点Node t = tail;//如果尾节点为nullif (t == null) { // Must initialize//就需要new一个node节点,并且设置为头节点,然后把头节点赋值给尾节点if (compareAndSetHead(new Node()))tail = head;} else {//当链表初始化完成后,或者链表中已经由其他节点时//把要加入链表的新节点的前指针设置为尾节点node.prev = t;//并且把新加入的节点设置为尾节点if (compareAndSetTail(t, node)) {//设置成功就之前尾节点的后指针指向新节点,这样新节点就变成了新的尾节点,如果设置失败,就继续循环,直到把新节点加入到链表尾部为止t.next = node;return t;}}}}

acquireQueued 源码

  • 首先获取当前节点的前置节点,如果前置节点是头节点,就尝试去获取锁
  • 如果获取锁成功,就把自己设为头节点,就把锁的state改为1,设置当前线程为持有锁的线程
  • 如果前置节点不是头节点,或者获取锁失败
    • 就需要判断前置节点的waitStatus状态值,waitStatus值默认为0,第一次进入循环,会把前置节点的waitStatus的值改为-1后,继续下一次循环后,会调用 LockSupport.park 方法阻塞当前线程,需要等待其他线程释放锁后,再唤醒阻塞的线程
    • 当持有锁的线程释放锁,且调用LockSupport.unpark 唤醒该线程后才能继续执行,LockSupport.unpark 唤醒的是头节点的下一个节点
    • 线程被唤醒后,检查线程是否被中断,如果线程没有被中断,就继续进行循环
    • 继续尝试去加锁,因为是非公平锁,所以有可能会加锁失败
      • 如果加锁成功,就把锁的state改为1,设置当前线程为持有锁的线程,并且把当前线程的节点设置为链表的头节点,原本的头节点会从链表中剔除
      • 因为每次唤醒的都是头节点的下一个节点,所以成功抢到到锁后,被唤醒的节点会成为新的头节点,后续会唤醒链表的下一个节点
  • 如果线程在等待过程中取消,没有获取到锁就跳出了循环,failed值为默认的true,就会执行cancelAcquire方法,取消正在排队的节点
    • 首先设置当前节点的线程为null,然后获取上一个没有取消的前置节点,
    • 把当前节点的 waitStatus 设置为1(1就是要取消的节点)
    • 如果当前节点是尾节点,就把上一个有效的节点设置为尾节点
    • 如果不是尾节点,并且满足出队条件,就变更链表中相关节点的前置和后置引用,剔除要取消的节点
	//arg为1,独占锁final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (;;) {//获得node节点的前置节点final Node p = node.predecessor();//node节点的前置节点是否为头节点,如果是就尝试去获取锁if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return interrupted;}//判断node节点的前置节点的waitStatus状态,默认情况下都是0,在第二次循环的时候,就会改成-1,然后执行parkAndCheckInterrupt方法//parkAndCheckInterrupt方法会阻塞当前线程//也就是后面的节点会把前面节点的 waitStatus 改为-1if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}}/*** waitStatus 当前节点再队列中的等待状态默认为01表示线程获取锁的请求被取消-1表示线程已经准备好了-2表示节点在等待队列中,等待唤醒-3表示共享式(锁分为共享和独占)同步状态获取将无条件地传播下去*/private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {//前置节点的状态int ws = pred.waitStatus;// SIGNAL= -1 , 当线程再次进行循环的时候,前一个节点的waitStatus已经被设置为-1,就返回trueif (ws == Node.SIGNAL)return true;//线程被取消if (ws > 0) {do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);pred.next = node;} else {//如果前置节点的 waitStatus不等于-1也不大于0,就把waitStatus的值改为-1后,返回falsecompareAndSetWaitStatus(pred, ws, Node.SIGNAL);}return false;}//阻塞当前线程private final boolean parkAndCheckInterrupt() {//验证当前线程的通行证,阻塞当前线程LockSupport.park(this);//被唤醒后,检查线程是否被中断,如果线程没有被中断,就返回 falsereturn Thread.interrupted();}

取消正在进行的获取尝试

	// node 为需要取消的节点private void cancelAcquire(Node node) {// Ignore if node doesn't existif (node == null)return;//设置当前节点的线程为nullnode.thread = null;//获取上一个节点Node pred = node.prev;//waitStatus > 0 ,表示上一个节点也要取消while (pred.waitStatus > 0)//那么就一直向上找,直到找到没有取消的前置节点node.prev = pred = pred.prev;//获取不会取消的前置节点的下一个节点Node predNext = pred.next;//把当前节点的 waitStatus 设置为1,1就是要取消的节点node.waitStatus = Node.CANCELLED;//如果当前节点是尾节点,就把上一个还有效的节点设置为尾节点if (node == tail && compareAndSetTail(node, pred)) {//设置成功,就把上一个节点的后置节点设置为null,这样上一个还有效的节点就成为了尾节点compareAndSetNext(pred, predNext, null);} else {//否则int ws;//前置节点不能是头节点,因为头节点只是占位节点,并且满足出队条件if (pred != head &&((ws = pred.waitStatus) == Node.SIGNAL ||(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&pred.thread != null) {//变更链表中相关节点的前置和后置引用,剔除要取消的节点Node next = node.next;if (next != null && next.waitStatus <= 0)compareAndSetNext(pred, predNext, next);} else {unparkSuccessor(node);}node.next = node; // help GC}}
unlock

unlock 源码,其实是再调用release方法

    public void unlock() {sync.release(1);}

release方法会首先尝试释放锁

  • tryRelease 会把持有锁的线程为null,并且把锁的state设置为0
  • 如果链表被初始化过,有在等待的线程节点,头节点就不为空,且waitStatus值为-1
  • 接下来会把头节点的waitStatus的改为0,如果头节点的下一个节点不为null,就调用LockSupport.unpark 方法,唤醒头节点的下一个节点
    public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);return true;}return false;}

AQS的tryRelease方法,同样没有做实现,需要子类自己去实现,下面是ReentrantLock的实现

		protected final boolean tryRelease(int releases) {//传入的releases为1,持有锁的线程State为1,所以C为0int c = getState() - releases;//如果当前线程不等于持有锁的线程会抛出异常,这种情况一般不会出现if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;//c等于0,就设置持有锁的线程为null,并且把state设置为0,返回trueif (c == 0) {free = true;setExclusiveOwnerThread(null);}setState(c);return free;}

unparkSuccessor

    private void unparkSuccessor(Node node) {int ws = node.waitStatus;if (ws < 0)//重新把头节点的waitStatus值改为0compareAndSetWaitStatus(node, ws, 0);//头节点的下一个节点Node s = node.next;//如果链表被初始化过,有在等待的线程节点,头节点的后置节点就不为null//如果链表后面还有其他节点,那么头节点的后置节点waitStatus值就为-1if (s == null || s.waitStatus > 0) {s = null;for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}//如果头节点的下一个节点不为null,就直接调用 LockSupport.unpark 方法,唤醒头节点的下一个节点if (s != null)LockSupport.unpark(s.thread);}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/294918.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2. 结构型模式 - 桥接模式

亦称&#xff1a; Bridge 意图 桥接模式是一种结构型设计模式&#xff0c; 可将一个大类或一系列紧密相关的类拆分为抽象和实现两个独立的层次结构&#xff0c; 从而能在开发时分别使用 问题 抽象&#xff1f; 实现&#xff1f; 听上去挺吓人&#xff1f; 让我们慢慢来&#x…

Zoho Mail企业邮箱:跨境协作利器,荣登Top榜单的首选之选

在全球化的商业环境中&#xff0c;高效的协作工具对于企业及个人来说都至关重要。邮件因其自身规格正式、全球通用等特点&#xff0c;在跨境通信场景中仍然是最高频使用的工具之一。 Zoho Mail企业邮箱因邮件抵达率高&#xff0c;数据加密严&#xff0c;纯净无广告&#xff0c;…

CSS基础小练习

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>圣诞节快乐</title><style>/*设置背景色*/body{background-image:linear-gradient(green 50%,red 50%);background-size:100% 30px;}/*让div在页面居中*/#text{…

【c】无限制输入字符

我们做题有时候会碰上这种的输入&#xff0c;一直输入字符&#xff0c; 下面附上两种解决办法 方法1&#xff1a; char s[10000]; int i0; int arr[1000]{0}; while(scanf("%c",&s[i])!EOF) { i; } 这样你就可以一直输入&#xff0…

DBeaver中使用外部格式化程序对进行sql格式化

本文介绍了如何在DBeaver中使用pgFormatter、sqlprase、sqlformatter等外部格式化程序对sql进行格式化。 目录 一、pgFormatter 1.准备工作 2.DBeaver中进行配置 二、sqlprase 1.准备工作 2.在DBeaver中配置 三、sql-formatter 1.准备工作 2.在DBeaver中配置 一、pgF…

位运算:Leetcode137.只出现一次的数字(2)

题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;除某个元素仅出现 一次 外&#xff0c;其余每个元素都恰出现 三次 。请你找出并返回那个只出现了一次的元素。 示例 1&#xff1a; 输入&#xff1a;nums [2,2,3,2] 输出&#xff1a;3示例 2&#xff1a; 输入&…

Openwrt AP 发射 WiFi 信号

问题 想一次把 OpenWrt 路由器 wifi 问题给解决&#xff0c;完全取代路由器。 使用 倍控的 N5105 设备&#xff0c;有 mPCIe 接口&#xff0c;使用了 intel AX200 无线网卡&#xff0c;支持 2.4G 与 5G。 设置步骤 OpenWrt 镜像 第一次使用的镜像不支持 wifi&#xff0c;在…

Google推出Gemini AI开发——10年工作经验的Android开发要被2年工作经验的淘汰了?

应用程序中利用 Gemini 前言&#xff08;可略过&#xff09;、使用 Gemini Pro 开发应用程序正文、Android Studio 中构建Gemini API Starter 应用第 1 步&#xff1a;在 AI 的新项目模板的基础上进行构建第 2 步&#xff1a;生成 API 密钥第 3 步&#xff1a;开始原型设计 正文…

核方法 : 多项式核函数

一、定义 多项式核函数&#xff1a; 将数据映射到高维空间&#xff0c;从而实现 低维线性不可分 到 高维线性可分 二、核心代码介绍 1、关于 svm_clf.decision_function &#xff1a; 2、关于 PolynomialFeatures(degree3) &#xff1a; 二、全量代码 import numpy as …

python读取Excel内容并展示成json

shigen坚持更新文章的博客写手&#xff0c;擅长Java、python、vue、shell等编程语言和各种应用程序、脚本的开发。记录成长&#xff0c;分享认知&#xff0c;留住感动。 伙伴们&#xff0c;又是许久未曾见面了。最近也是在忙着加班&#xff0c;加上没有新技术的输入和产出&…

INFINI Gateway 如何防止大跨度查询

背景 业务每天生成一个日期后缀的索引&#xff0c;写入当日数据。 业务查询有时会查询好多天的数据&#xff0c;导致负载告警。 现在想对查询进行限制–只允许查询一天的数据&#xff08;不限定是哪天&#xff09;&#xff0c;如果想查询多天的数据就走申请。 技术分析 在每…

Ubuntu 常用命令之 tar 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 tar 命令在 Ubuntu 系统中是用来打包和解包文件的工具。tar 命令可以将多个文件或目录打包成一个 tar 文件&#xff0c;也可以将 tar 文件解包成原来的文件或目录。 tar 命令的常用参数如下 c&#xff1a;创建一个新的 tar 文件…