【雷达原理】雷达测速原理及实现方法

一、雷达测速原理

1.1 多普勒频率

 当目标和雷达之间存在相对运动时,若雷达发射信号的工作频率为eq?f_%7B0%7D,则接收信号的频率为eq?f_%7B0%7D+f_%7Bd%7D,其中eq?f_%7Bd%7D为多普勒频率。将这种由于目标相对于辐射源运动而导致回波信号的频率发生变化的现象称为多普勒效应。

如图1-1所示,照射到目标上的波形具有间隔为eq?%5Clambda(波长)的等相位波前,靠近雷达的目标导致回波信号的等相位波前相互靠近(回波信号的波长eq?%7B%5Clambda%7D%27较短),即eq?%5Clambda%20%3E%7B%5Clambda%20%7D%27;反之,远离雷达的目标导致回波信号的等相位波前相互扩展(回波信号的波长eq?%7B%5Clambda%7D%27较长),即eq?%5Clambda%20%3C%7B%5Clambda%20%7D%27

所以有以下结论:当目标靠近雷达运动时,多普勒频率为正;当目标远离雷达运动时,多普勒频率为负。

25ff4e353e8549b8aecd7a672cd35243.png
图1-1 多普勒效应

下面将给出多普勒频率的计算公式,其证明过程可以参考书本上的推导。

设目标的径向速度为eq?v,则目标回波信号的多普勒频率为:

eq?f_%7Bd%7D%3D%5Cfrac%7B2v%7D%7B%5Clambda%20%7D,目标靠近雷达

eq?f_%7Bd%7D%3D%5Cfrac%7B-2v%7D%7B%5Clambda%20%7D,目标远离雷达

1.2 与速度有关的概念

通过发射两个时间间隔为Tc的线性调频信号,则接收到的每个脉冲对应的距离维FFT将在同一个位置具有峰值,但是峰值对应的相位不同。这两个峰值具有相位差,其与目标相对雷达运动产生的多普勒频率相关。

所以,当目标以速度v运动时,对应的相位差为:

eq?%5Comega%20%3D2%5Cpi%20f_%7Bd%7DT_%7Bc%7D%3D%5Cfrac%7B4%5Cpi%20vT_%7Bc%7D%7D%7B%5Clambda%7D                 (1.2-1)

利用式(1.2-1)可计算出运动目标的速度。

(1) 最大测量速度

0597dfa2880347c3a9db9e2fc0caed00.png

只有相位差满足eq?%5Cleft%20%7C%20%5Comega%20%5Cright%20%7C%20%3C%5Cpi,才可以清楚的测量目标的速度,否则会出现速度模糊。

\left | \omega \right | <\pi\Rightarrow \frac{4\pi vT_{c}}{\lambda}<\pi \Rightarrow v<\frac{\lambda}{4T_{c}}             (1.2-2)

由此可得,当雷达以脉冲重复周期Tc发射信号时,可测量目标的最大不模糊速度为:

v_{max} = \frac{\lambda}{4T_{c}}                                             (1.2-3)

(2) 速度分辨率

当雷达前方有两个位置相近而速度不同(v1,v2)的目标时,我们可以发射一系列等间隔的线性调频信号对其进行测量,则距离维FFT的峰值位置相同,但这些峰值对应的离散序列有两个旋转向量(w1,w2),即回波信号的角频率。

帧:将N个等间隔周期的线性调频信号称为一帧;

多普勒维FFT:一帧脉冲间进行FFT,也称为速度维FFT;

雷达的速度分辨能力取决于多普勒维FFT的频率分辨率,两个速度差为△v的目标回波信号的角频率间隔为△w:

\Delta \omega =\frac{4\pi \Delta vT_{c}}{\lambda }                                          (1.2-4)

由离散傅里叶变换的特性可知,要分辨这两个角频率,需要满足:

\Delta \omega >\frac{2\pi }{N}                                                  (1.2-5)

联合式(1.2-4)和式(1.2-5)可得:

\Delta v > \frac{\lambda }{2NT_{c}}                                                  (1.2-6)

因而,速度分辨率为:

v_{res} = \frac{\lambda }{2NT_{c}}                                                    (1.2-7)

(3) 速度点精度

设一帧的脉冲数为N,对其进行多普勒维FFT的点数为N_{fft},则完成FFT的运算后,速度维上的每一个点代表的速度为:

V_{point}=\frac{v_{max} }{\frac{N_{fft}}{2}}= \frac{\lambda}{2N_{fft}T_{c}}                        (1.2-8)

N_{fft}=N,则有:

V_{point}= \frac{\lambda}{2NT_{c}}                                               (1.2-9)

二、 动目标检测(MTD)技术

6aafaaa3f1e54d8b9048831890c5af35.png
图2-1   MTI滤波器特性

MTI滤波器虽然可以抑制杂波信号,但无法区分具有不同速度的运动目标回波信号,导致雷达无法实现对具有相同距离不同速度的运动目标的检测。动目标检测(Moving Target Detection,MTD)技术采用一组相邻且部分重叠的滤波器组,覆盖目标的整个多普勒频率范围,从每个滤波器的输出,获取对应目标的多普勒频率,从而得到运动目标的速度。

c529aa4a7f464b58bdb0d34dac580eed.png
图2-2  MTD滤波器特性

在工程应用中,通常采用(MTI+MTD)的方式,先利用MTI滤波器将雷达探测到的杂波及低速运动目标滤除,再采用MTD滤波器将不同速度的运动目标进行区分。

2.1 MTD算法原理

MTD算法的实现方式有两类:时域上采用FIR滤波器,频域上采用离散傅里叶变换(DFT)。对脉冲压缩后的数据,在同一距离单元的多个脉冲采用FFT进行处理,可得到不同速度的运动目标。

具有N个输出的横向滤波器,经过各重复周期的不同加权求和后,可以作为N个相邻的窄带滤波器组。其原理性结构如图2-3所示。

每个滤波器的权值可表示为:

N%7D

其中,i为滤波器的下标,k为同一距离单元的脉冲序列的下标,i=0,1,2,N-1,k=0,1,2,N-1。

可以得到MTD滤波器组的输入eq?x%28i%29与输出eq?y%28k%29的对应关系为:

N%7D%2Ck%3D0%2C1%2C2%2C...%2CN-1

上式与DFT的计算公式是等效的,所以可以用DFT实现MTD滤波器组。当N的取值为2的正整数次幂时,则可以采用DFT的快速算法——快速傅里叶变换(FFT)进行计算。

2.2 MTD算法仿真

设定3个目标,其距离分别为300米,600米,900米,速度分别为0m/s,10m/s,-15m/s,RSC分别为0.1㎡,1㎡,5㎡,利用上述目标参数产生模拟回波信号,对该信号进行二维FFT,即先在距离维上进行FFT,再对其多普勒维进行FFT,计算结果如图目标幅度值与目标的RCS及距离有关。

图2-3   二维FFT后的计算结果

三、MATLAB仿真代码

clc;
clear;
close all;%% LFM信号参数
B = 25e6;               % 带宽
T_chirp = 100e-6;       % 脉冲宽度
PRF = 1/T_chirp;        % 脉冲重复频率
u = B/T_chirp;          % 调频斜率
fs = 2*B;               % 采样率
NumADC = T_chirp*fs;       % 单个脉冲的采样点数
NumChirp = 128;             % 脉冲数
c = physconst('LightSpeed');        % 光速
f0 = 77e9;                          % 载频
Lambda = c/f0;                      % 波长R_max = fs*c/(2*u);                 % 最大测量距离
V_max = Lambda*PRF/4;               % 最大测量速度%% 目标参数
tarNum = 3;
tar_R0 = [300,600,900];           % 目标距离
tar_V0 = [0,10,-15];           % 目标速度
Rcs = [0.1,1,5];%% 模拟信号
Tt = linspace(0,T_chirp*NumChirp,NumADC*NumChirp);
Phase_t = @(f0,u,t) 2*pi*(f0*t+1/2*u*t.^2);        % LFM信号的相位表达式Signal_Tx = exp(1j*Phase_t(f0,u,Tt));           % 发射信号
Signal_Rx = 0;
for kk = 1:tarNumtar_R = tar_R0(kk)+tar_V0(kk)*Tt;tao = 2*tar_R/c;                % 目标回波的时延Ar = Rcs(kk)./(tar_R.^4);       % 目标回波幅度Signal_Rx = Signal_Rx + Ar.*exp(-1j*Phase_t(f0,u,(Tt-tao)));        % 接收信号
end% 混频
Signal_Mix = Signal_Tx.*Signal_Rx;rawData = reshape(Signal_Mix,NumADC,NumChirp);
clear Signal_Tx;
clear Signal_Rx;
clear Signal_Mix;%% 距离维FFT
Nfft1 = 4096;            % FFT点数
R_point = (fs/Nfft1)*c/(2*u);    % 距离点精度
delta_R = c/(2*B);              % 距离分辨率win1 = hamming(NumADC);       % 加窗
fft_Data = zeros(Nfft1,NumChirp);
for ii = 1:NumChirpfft_Data(:,ii) = fft(rawData(:,ii).*win1,Nfft1);
endx1 = (1:NumChirp)';
y1 = R_point*(0:Nfft1-1)';
figure(101);
mesh(x1,y1,mag2db(abs(fft_Data)));xlabel('脉冲数');ylabel('距离维');title('1维FFT');
ylim([0 2000]);%% 速度维FFT
win2 = hamming(NumChirp);       % 加窗
Nfft2 = NumChirp;
fft2D_Data = zeros(Nfft1,Nfft2);
for ii = 1:Nfft1fft2D_Data(ii,:) = fft(fft_Data(ii,:).*win2',Nfft2);
endV_point = Lambda*PRF/(2*Nfft2);
figure(103);
mesh(x1,y1,mag2db(abs(fft2D_Data)));xlabel('速度维');ylabel('距离维');title('MTD');
ylim([0 2000]);

参考文献

[1]陈伯孝, 等. 现代雷达系统分析与设计[M]. 西安:西安电子科技大学出版社, 2012.9.

[2] Introduction to mmwave Sensing:FMCW Radars.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296244.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DBA-MySql面试问题及答案-下

文章目录 1.能说下myisam 和 innodb的区别吗&#xff1f;2.说下mysql的索引有哪些吧&#xff0c;聚簇和非聚簇索引又是什么&#xff1f;3.那你知道什么是覆盖索引和回表吗&#xff1f;4、锁的类型有哪些呢5、你能说下事务的基本特性和隔离级别吗&#xff1f;6、那 ACID 靠什么保…

【数据结构】最短路径算法实现(Dijkstra(迪克斯特拉),FloydWarshall(弗洛伊德) )

文章目录 前言一、Dijkstra&#xff08;迪克斯特拉&#xff09;1.方法&#xff1a;2.代码实现 二、FloydWarshall&#xff08;弗洛伊德&#xff09;1.方法2.代码实现 完整源码 前言 最短路径问题&#xff1a;从在带权有向图G中的某一顶点出发&#xff0c;找出一条通往另一顶点…

XUbuntu22.04之跨平台音频编辑工具(平替Audition):ocenaudio(二百零二)

加粗样式 简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#…

智能优化算法应用:基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.金枪鱼群算法4.实验参数设定5.算法结果6.…

Python算法例26 落单的数Ⅳ

1. 问题描述 给定数组&#xff0c;除了一个数出现一次外&#xff0c;所有数都出现两次&#xff0c;并且所有出现两次的数都挨着&#xff0c;找出出现一次的数。 2. 问题示例 给出nums[3&#xff0c;3&#xff0c;2&#xff0c;2&#xff0c;4&#xff0c;5&#xff0c;5]&am…

Spark的核心概念:RDD、DataFrame和Dataset

Apache Spark&#xff0c;其核心概念包括RDD&#xff08;Resilient Distributed Dataset&#xff09;、DataFrame和Dataset。这些概念构成了Spark的基础&#xff0c;可以以不同的方式操作和处理数据&#xff0c;根据需求选择适当的抽象。 RDD&#xff08;Resilient Distribute…

FastAPI使用loguru时,出现重复日志打印的解决方案

首先看图&#xff0c;发现每个日志都被打印了3条。其实这个和uvicorn日志打印的设计有关&#xff0c;在uvicorn中有多个logger&#xff0c;分别是uvicorn、uvicorn.error、uvicorn.access 而LOGGING默认有一个属性propagate&#xff0c;这个属性为True时&#xff0c;子日志记录…

postgresql vacuum流程分析

概述 VACUUM是postgresql MVCC机制不可分割的组成部分。 postgresql在管理同一个元组的多个版本时&#xff0c;采取在堆表页面上从老版本到新版本放置元组的方法&#xff0c;每个元组都记录了xmax和xmin用于判断其可见性。这样的好处是&#xff08;1&#xff09;在索引键没有…

Nessus详细安装-windows (保姆级教程)

Nessus描述 Nessus 是一款广泛使用的网络漏洞扫描工具。它由 Tenable Network Security 公司开发&#xff0c;旨在帮助组织评估其计算机系统和网络的安全性。 Nessus 可以执行自动化的漏洞扫描&#xff0c;通过扫描目标系统、识别和评估可能存在的安全漏洞和弱点。它可以检测…

新版IDEA中Git的使用(一)

说明&#xff1a;本文介绍如何在新版IDEA中使用Git 创建项目 首先&#xff0c;在GitLab里面创建一个项目&#xff08;git_demo&#xff09;&#xff0c;克隆到桌面上。 然后在IDEA中创建一个项目&#xff0c;项目路径放在这个Git文件夹里面。 Git界面 当前分支&Commit …

计算机毕业设计 基于SpringBoot的房屋租赁管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.跳蛛算法4.实验参数设定5.算法结果6.参考文献7.MA…