向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

前言

本问题是在学习Rosen梯度投影优化方法的时候遇到的问题,主要是对于正交投影矩阵(NT(NNT)-1N)的不理解,因此经过查阅资料,学习了关于向量投影的知识,记录如下。

首先需要了解 子空间和子空间的正交补。相关知识可以查阅本人的另外一篇笔记,核和值域的关系:什么是矩阵的秩?,这篇笔记中是以矩阵列向量的生成子空间为例展开的。

核心公式:

  1. R ( A H ) ∩ N ( A ) = { 0 } R(A^H) \cap N(A)=\{0\} R(AH)N(A)={0}
  2. R ( A H ) ⊕ N ( A ) = C m R(A^H) \oplus N(A) = C^m R(AH)N(A)=Cm

其中R(AH)是A的行向量的生成子空间, R ( A H ) = { y ∈ R n ∣ y = A H x , x ∈ C m } R(A^H)=\{y\in R^n|y=A^Hx,x\in C^m\} R(AH)={yRny=AHx,xCm}

N(A)是A的核子空间, N ( A ) = { x ∣ A x = 0 , x ∈ R n } N(A)=\{x|Ax=0,x\in R^n\} N(A)={xAx=0,xRn}

正文

所谓向量投影,本质上是期望将Rn空间中的任意一个n维向量,分解称为y1+y2,其中y1属于R(AH),y2属于N(A)。

1、投影矩阵

投影是一种线性变换,要求两次投影变换的结果等于一次投影变换的结果。在信号处理领域当中,一个信号经过两次滤波器和经过一次滤波器的结果是相等的,那么这个滤波器在数学上可抽象成一个投影矩阵。

写成数学公式: P 2 x = P P x = P x P^2x=PPx=Px P2x=PPx=Px。因此要求投影矩阵P是一个方阵。

可证明:R§=R(PH)。通常情况下一个方阵的行空间和列空间是不相同的,二者仅仅是同构关系,即维数相同。

即: R ( P ) ⊕ N ( P ) = C n R(P) \oplus N(P) = C^n R(P)N(P)=Cn

投影分为正交投影和斜投影。二者的区别在于,正交投影矩阵P,R§的正交补=N§,等价于,R§和N§正交。而斜投影矩阵则没有这个性质。

可证明:一个投影矩阵P,是正交投影矩阵的充要条件是:P=PH

举一个简单的例子。

R2空间,向x轴的正交投影P,只能是取一个二维向量的横坐标。R§就是x轴,N§就是y轴,x轴的正交补是y轴。

R2空间,向x轴的斜投影Q,比如是指向东偏南45度➘方向的的投影。R(Q)就是x轴,x轴的正交补是y轴,而N(Q)是沿着东偏南45度➘方向的一维子空间,即N(Q)={ x|x = a(1,-1)T, a \in R}。

2、如何将一个向量投影到行满秩矩阵A的行向量生成子空间?

现在已知一个行满秩矩阵 A m m × n A^{m\times n}_m Amm×n,R(AH)是由A的行向量生成的子空间。由上面的例子,可以猜到,n维欧氏空间向R(AH)的正交投影是唯一的,斜投影是不唯一的(此处考虑典型情况,而非考虑A行列满秩的极端情况)。

现在推导一个由A构成的正交投影矩阵P。

  1. y = y 1 + y 2 , y 1 ∈ R ( A H ) , y 2 ∈ R ⊥ ( A H ) y=y_1+y_2,y_1\in R(A^H),y_2\in R^\perp(A^H) y=y1+y2,y1R(AH),y2R(AH)
  2. P y = P ( y 1 + y 2 ) = y 1 Py=P(y_1+y_2)=y_1 Py=P(y1+y2)=y1
  3. y 1 ∈ R ( A H ) , ∴ y 1 = A H x y_1\in R(A^H),\therefore y_1=A^Hx y1R(AH),y1=AHx,x是一个m维的列向量,即y1可表示为A的行向量的线性组合
  4. y 2 ∈ R ⊥ ( A H ) = N ( A ) , A y 2 = 0 , A y = A A H x y_2\in R^\perp(A^H)=N(A),Ay_2=0,Ay=AA^Hx y2R(AH)=N(A),Ay2=0,Ay=AAHx
  5. x = ( A A H ) − 1 A y , y 1 = [ A H ( A A H ) − 1 A ] y x=(AA^H)^{-1}Ay,y_1 = [A^H(AA^H)^{-1}A]y x=(AAH)1Ay,y1=[AH(AAH)1A]y
  6. P = A H ( A A H ) − 1 A = P H P = A^H(AA^H)^{-1}A=P^H P=AH(AAH)1A=PH

从第5步可以知道为什么需要A行满秩了,只有行满秩的矩阵, y 1 ∈ R ( A H ) , y 1 = A H x y_1\in R(A^H),y_1=A^Hx y1R(AH),y1=AHx,其中x才有唯一解。

至此,我们知道 P = A H ( A A H ) − 1 A P = A^H(AA^H)^{-1}A P=AH(AAH)1A是一个正交投影矩阵,将一个向量投影到A的行向量的生成子空间。

3、关于Rosen梯度投影法

Rosen梯度投影法的可行下降方向: P k = Q ( − g k ) = ( I − N T ( N N T ) − 1 N ) g k P^k = Q(-g^k) = (I-N^T(NN^T)^{-1}N)g^k Pk=Q(gk)=(INT(NNT)1N)gk

Q是一个投影矩阵,并且投向 N T ( N N T ) − 1 N N^T(NN^T)^{-1}N NT(NNT)1N的正交补空间,N是由积极约束的法向量组成的矩阵,因此P是负梯度方向向积极约束的法向量张成的行空间的正交补的投影。从几何上看,就是将负梯度方向投影向了积极约束的超平面的交线上。

需要注意,Rosen梯度投影法的约束条件是一个多面集。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296258.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DLLNotFoundException:xxx tolua... 错误打印

DLLNotFoundException:xxx tolua... 错误打印 一、DLLNotFoundException介绍二、Plugins文件夹文件目录结构如下: 三、Plugins中的Android文件夹四、Plugins中的IOS文件夹这里不说了没测试过不过原理应该也是选择对应的平台即可五、Plugins中的x86和X86_64文件夹 一…

git入门指南:新手快速上手git(Linux环境如何使用git)

目录 前言 1. 什么是git? 2. git版本控制器 3. git在Linux中的使用 安装git 4. git三板斧 第一招:add 第二招:commit 第三招:push 5. 执行状态 6. 删除 总结 前言 Linux的基本开发工具介绍完毕,接下来介绍一…

UnityHub无法打开项目问题,打开项目闪退回到hub界面

UnityHub无法打开项目问题,打开项目闪退回到hub界面 UnityHub启动项目闪烁unity界面之后立刻闪退到UnityHub界面情况一:这里这个问题我遇到了很多次情况都不太一样,我先说下我遇到的第一种问题也就是最好解决的一种。许可证到期导致闪退 情况…

A Philosophy of Software Design 学习笔记

前言 高耦合,低内聚,降低复杂度:在软件迭代中,不关注软件系统结构,导致软件复杂度累加,软件缺乏系统设计,模块混乱,一旦需求增加、修改或者优化,改变的代价无法评估&…

OpenSource - SCM服务管理平台

文章目录 官方网址文档下载版本功能解决了哪些问题使用对象优势Linxu版本scm-dev deb服务列表 Windows版本scm-dev 服务列表scm-all 服务列表scm-jdk 服务列表scm-springboot 精简版本服务列表scm-springboot 服务列表scm-tomcat 服务列表 SCM 截图 官方网址 https://scm.chus…

SpringIOC之AbstractMessageSource

博主介绍:✌全网粉丝5W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…

Qt前端技术:5.QSS

这个是表示QFrame中的pushButton中的子类和它子类的子类都将背景变为red 写成大于的时候表示只有直接的子类对象才会变 这个图中的QGroupBox和QPushButton都是QFrame的直接的子类 这个中的QGroupBox是QFrame的直接的子类但是QPushButton 是QGroupBox的子类,QPushB…

【雷达原理】雷达测速原理及实现方法

一、雷达测速原理 1.1 多普勒频率 当目标和雷达之间存在相对运动时,若雷达发射信号的工作频率为,则接收信号的频率为,其中为多普勒频率。将这种由于目标相对于辐射源运动而导致回波信号的频率发生变化的现象称为多普勒效应。 如图1-1所示&a…

DBA-MySql面试问题及答案-下

文章目录 1.能说下myisam 和 innodb的区别吗?2.说下mysql的索引有哪些吧,聚簇和非聚簇索引又是什么?3.那你知道什么是覆盖索引和回表吗?4、锁的类型有哪些呢5、你能说下事务的基本特性和隔离级别吗?6、那 ACID 靠什么保…

【数据结构】最短路径算法实现(Dijkstra(迪克斯特拉),FloydWarshall(弗洛伊德) )

文章目录 前言一、Dijkstra(迪克斯特拉)1.方法:2.代码实现 二、FloydWarshall(弗洛伊德)1.方法2.代码实现 完整源码 前言 最短路径问题:从在带权有向图G中的某一顶点出发,找出一条通往另一顶点…

XUbuntu22.04之跨平台音频编辑工具(平替Audition):ocenaudio(二百零二)

加粗样式 简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏&#…

智能优化算法应用:基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.金枪鱼群算法4.实验参数设定5.算法结果6.…