智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蛇优化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蛇优化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蛇优化算法

蛇优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/124438414
蛇优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

蛇优化算法参数如下:

%% 设定蛇优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明蛇优化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296268.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tomcat与Netty比较

Tomcat介绍Tomcat支持的协议Tomcat的优缺点Netty介绍Netty支持的协议Netty的优点和缺点Tomcat和Netty的区别Tomcat和Netty的应用场Tomcat和Netty来处理大规模并发连接的优化Tomcat与Netty的网络模型的区别Tomcat与Netty架构设计拓展 Tomcat介绍 Tomcat是一个免费的、开放源代码…

LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息

LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…

2024 年 22 款顶级免费数据恢复软件比较 [Windows 和 Mac]

适用于 Windows 和 Mac 用户的最佳数据恢复软件下载列表和比较,可快速恢复丢失的数据、已删除的文件、照片或格式化的分区数据: 数据恢复软件是一种从任何存储介质恢复丢失文件的应用程序。它可以恢复由于病毒攻击、硬盘故障或任何其他原因而意外删除或…

TCGA超过1G的病理wsi数据下载-gdc-client

使用网页端下载TCGA超过1G的病理wsi数据,数据下载到1G后就不能完整下载。遂采用gdc-client下载。 Win 环境下新建这个文件夹放在系统盘进行储存,否则会报错:ERROR: Unable to write state file: [WinError 17] 系统无法将文件移到不同的磁盘…

【docker笔记】docker理论及安装

前言 本笔记来源于尚硅谷docker教学视频 视频地址:https://www.bilibili.com/video/BV1gr4y1U7CY/?spm_id_from333.337.search-card.all.click 纯手打笔记,来之不易,感谢支持~ Docker简介 docker为什么会出现 想象一下:一个应用…

leetcode 268. 丢失的数字(优质解法)

链接&#xff1a;268. 丢失的数字 代码: class Solution {public int missingNumber(int[] nums) {int result0;for(int i0;i<nums.length;i){result^i;}for(int i0;i<nums.length;i){result^nums[i];}return result;} } 题解&#xff1a; 本题是比较简单的题&#xff…

要参加微软官方 Copilot 智能编程训练营了

GitHub Copilot 是由 GitHub、OpenAI 和 Microsoft 联合开发的生成式 AI 模型驱动的。 GitHub Copilot 分析用户正在编辑的文件及相关文件的上下文&#xff0c;并在编写代码时提供自动补全式的建议。 刚好下周要参加微软官方组织的 GitHub Copilot 工作坊-智能编程训练营&…

向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

向量投影&#xff1a;如何将一个向量投影到矩阵的行向量生成子空间&#xff1f; 前言 本问题是在学习Rosen梯度投影优化方法的时候遇到的问题&#xff0c;主要是对于正交投影矩阵(NT(NNT)-1N)的不理解&#xff0c;因此经过查阅资料&#xff0c;学习了关于向量投影的知识&…

DLLNotFoundException:xxx tolua... 错误打印

DLLNotFoundException:xxx tolua... 错误打印 一、DLLNotFoundException介绍二、Plugins文件夹文件目录结构如下&#xff1a; 三、Plugins中的Android文件夹四、Plugins中的IOS文件夹这里不说了没测试过不过原理应该也是选择对应的平台即可五、Plugins中的x86和X86_64文件夹 一…

git入门指南:新手快速上手git(Linux环境如何使用git)

目录 前言 1. 什么是git&#xff1f; 2. git版本控制器 3. git在Linux中的使用 安装git 4. git三板斧 第一招&#xff1a;add 第二招&#xff1a;commit 第三招&#xff1a;push 5. 执行状态 6. 删除 总结 前言 Linux的基本开发工具介绍完毕&#xff0c;接下来介绍一…

UnityHub无法打开项目问题,打开项目闪退回到hub界面

UnityHub无法打开项目问题&#xff0c;打开项目闪退回到hub界面 UnityHub启动项目闪烁unity界面之后立刻闪退到UnityHub界面情况一&#xff1a;这里这个问题我遇到了很多次情况都不太一样&#xff0c;我先说下我遇到的第一种问题也就是最好解决的一种。许可证到期导致闪退 情况…

A Philosophy of Software Design 学习笔记

前言 高耦合&#xff0c;低内聚&#xff0c;降低复杂度&#xff1a;在软件迭代中&#xff0c;不关注软件系统结构&#xff0c;导致软件复杂度累加&#xff0c;软件缺乏系统设计&#xff0c;模块混乱&#xff0c;一旦需求增加、修改或者优化&#xff0c;改变的代价无法评估&…