python实现图像的几何变换——冈萨雷斯数字图像处理

1、 实现图像的平移。

原理:
图像的平移是一种基本的图像处理操作,它将图像中的每个像素沿着指定的方向和距离移动,以创建一个新的平移后的图像。平移的原理很简单,通常涉及到以下几个步骤:

  1. 确定平移的距离和方向:首先,确定您希望将图像沿着哪个方向移动以及移动多远。这可以通过定义一个平移向量来实现,该向量包含了水平和垂直方向上的移动距离。

  2. 创建一个新的图像:为了执行平移操作,您需要创建一个与原始图像相同大小的新图像,通常称为目标图像。这个目标图像将用于存储平移后的图像。

  3. 遍历原始图像的像素:对于原始图像中的每个像素,将其从原始图像中取出。

  4. 计算新的像素位置:对于每个取出的像素,根据平移向量的值计算其在目标图像中的新位置。通常,新位置的计算方法如下:
    新X坐标 = 原X坐标 + 水平平移距离
    新Y坐标 = 原Y坐标 + 垂直平移距离

  5. 将像素放置到目标图像中:将每个像素放置到目标图像的新位置上。如果新位置超出了目标图像的边界,可以选择丢弃该像素或采用某种插值方法来填充。

重复步骤3至步骤5:重复以上步骤,直到遍历了原始图像的所有像素。
完成平移操作:完成后,目标图像就包含了原始图像沿指定方向平移后的图像。

在这里,我们采用OpenCV的warpAffine函数来解决图像平移,cv2.warpAffine 是 OpenCV(Open Source Computer Vision Library)中的一个函数,用于执行仿射变换(Affine Transformation)操作。仿射变换是一种线性变换,它可以用来实现图像的平移、旋转、缩放、剪切等操作。该函数的主要作用是将输入图像应用一个仿射变换矩阵,从而生成一个经过变换的输出图像。通常,可以使用这个函数来实现图像的平移、旋转、缩放和剪切等操作,而不需要手动编写复杂的像素级操作。

以下是 cv2.warpAffine 函数的一般用法:

cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])

src:输入图像。
M:仿射变换矩阵,用于指定要执行的变换操作。
dsize:输出图像的大小。
dst(可选):输出图像。如果未提供,则函数会创建一个新的图像。
flags(可选):插值方法的标志,用于确定如何处理像素之间的插值。
borderMode(可选):图像边界像素的处理方式,通常用于变换后的图像可能超出原始图像边界的情况。
borderValue(可选):用于边界填充的像素值。

编写代码,输出如下图所示的结果:

在这里插入图片描述
如果(x,y)方向的平移量分别为(t_x, t_y),则变换矩阵
在这里插入图片描述

可以用类型为np.float32的numpy数组来表示它,并将其作为参数传给cv2.warpAffine函数完成几何变换。上图中
在这里插入图片描述

代码实现

import  cv2
import  numpy as np
import  matplotlib.pyplot as plt
img=cv2.imread("lena_gray_512.tif")rows,cols,channel=img.shapeaffineShrink = np.array([[1,0,100],[0,1,50]],np.float32)
shrinkTwoTimes = cv2.warpAffine(img, affineShrink, (cols, rows), borderValue=10)
plt.subplot(121),plt.imshow(img,'gray'),plt.title("original")
plt.subplot(122),plt.imshow(shrinkTwoTimes,'gray'),plt.title("translation")
plt.show()
cv2.waitKey(0)
cv2.destroyAllWindows()

结果展示

在这里插入图片描述

2、实现图像的旋转

原理

图像旋转是数字图像处理中的一项基本操作,它的原理可以分为几个关键步骤:

**定义旋转中心:**通常旋转是围绕图像的某一点进行的。这个点可以是图像的中心,也可以是任意一点。

旋转变换:在二维空间中,旋转可以通过旋转矩阵来实现。对于一个给定的旋转角度θ,旋转矩阵是这样的:
在这里插入图片描述
这个矩阵可以用来计算图像中每个像素旋转后的新位置。

像素映射:在旋转图像时,原始图像中的像素需要映射到新的位置。这通常涉及插值算法,如最近邻插值、双线性插值或三次样条插值,以确定新位置的像素值。

处理边界问题:旋转后,图像可能会超出原始图像的边界。这可能需要对图像进行裁剪或填充。

反走样:由于旋转可能导致像素不再对齐,因此可能需要进行反走样处理以减少锯齿效应。

但是在OpenCV 允许在任意地方进行旋转,这里旋转矩阵的形式应该修改为

在这里插入图片描述
其中:

在这里插入图片描述
为了构建这个旋转矩阵,OpenCV 提供了一个函数:cv2.getRotationMatrix2D

编写代码,输出如下图所示的结果:

在这里插入图片描述

提示:

可以先用函数cv2.getRotationMatrix2D得到变换矩阵,该函数的参数包括:旋转中心坐标、旋转角度等,所以利用该函数可以实现围绕任意中心的旋转;旋转角度为正表示逆时针旋转。之后将得到的变换矩阵作为参数传给cv2.warpAffine函数完成几何变换。上图中旋转中心为图像中心,旋转角度为45°。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img=cv2.imread('lena_gray_512.tif',0)
rows,cols=img.shape
# 这里的第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子
# 可以通过设置旋转中心,缩放因子,以及窗口大小来防止旋转后超出边界的问题
M=cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
# 第三个参数是输出图像的尺寸中心
dst=cv2.warpAffine(img,M,(cols,rows))plt.subplot(121),plt.imshow(img,'gray'),plt.title("original")
plt.subplot(122),plt.imshow(dst,'gray'),plt.title("rotation")
plt.show()
cv2.destroyAllWindows()

结果展示

在这里插入图片描述

3、 实现图像的缩放

原理

图像缩放是数字图像处理中的一项重要技术,它涉及改变图像的尺寸,包括放大和缩小。主要流程如下

**定义缩放比例:**首先确定缩放的比例。这个比例可以是均匀的(横向和纵向相同)或不均匀的(横向和纵向不同)。
**计算新像素位置:**根据缩放比例,为原始图像中的每个像素计算在缩放后图像中的新位置。如果是放大图像,新图像中的许多像素位置将没有直接对应的原始像素;如果是缩小图像,一些原始像素将不会在新图像中有对应位置。
**像素插值:**由于缩放过程中新像素位置可能并不对应原始图像中的确切像素,因此需要通过插值算法来确定这些新位置的像素值。常见的插值方法包括:
**最近邻插值:**将新像素的值设置为最接近的原始像素值。这种方法简单快速,但可能导致图像走样。
双线性插值:考虑最接近的四个像素,通过线性插值计算新像素值。这种方法在图像质量和计算复杂度之间提供了一个较好的平衡。
**双三次插值:**考虑最接近的16个像素,使用三次插值算法计算新像素值。这种方法可以提供更高质量的结果,但计算更为复杂。
**处理边界问题:**在缩放过程中,新图像的尺寸可能与原始图像不完全相符,特别是在不均匀缩放的情况下。这可能需要对图像进行裁剪或填充。
**质量控制:**图像缩放可能会引入各种失真,如锯齿效应或模糊。因此,可能需要采用附加的图像处理技术来优化结果,如锐化处理或反走样技术。

实现下图显示的结果

在这里插入图片描述
在这里插入图片描述

提示

用函数cv2.resize对图像进行8倍放大,参数分别为cv2.INTER_NEAREST、cv2.INTER_LINEAR和cv2.INTER_CUBIC时代表选择最近邻插值法、双线性插值法、三次样条插值法。

import  cv2 as cv
import numpy as np
import matplotlib.pyplot as pltimg=cv.imread("jellybeans.png")
img= cv.cvtColor(img,cv.COLOR_RGB2GRAY)
print(img.shape)
x, y = img.shape[0:2]
near = cv.resize(img,(0,0),  fx=8, fy=8,interpolation=cv.INTER_NEAREST)
linear= cv.resize(img, (0,0), fx=8, fy=8,interpolation=cv.INTER_LINEAR)
cubic=cv.resize(img, (0,0), fx=8, fy=8,interpolation=cv.INTER_CUBIC)plt.subplot(221),plt.imshow(img,'gray'),plt.title("original")
plt.subplot(222),plt.imshow(near,'gray'),plt.title("nearest")
plt.subplot(223),plt.imshow(linear,'gray'),plt.title("linear")
plt.subplot(224),plt.imshow(cubic,'gray'),plt.title("cubic")
plt.show()

结果展示

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltimg=cv2.imread("binarysmall.png")
img=cv2.cvtColor(img,cv2.COLOR_RGV2GRAY)
print(img.shape)
x,y=img.shape[0:2]
near=cv2.resize(img,(0,0),fx=8,fy=8,interpolation=cv2.INTER_NEAREST)
linear=cv2.resize(img,(0,0),fx=8,fy=8,interpolation=cv2.INTER_LINEAR)
cubic=cv2.resize(img,(0,0),fx=8,fy=8,interpolation=cv2.INTER_CUBIC)plt.subplot(221),plt.imshow(img,"gray"),plt.title("original")
plt.subplot(222),plt.imshow(near,"gray"),plt.title("nearst")
plt.subplot(223),plt.imshow(linear,"gray"),plt.title("linear")
plt.subplot(224),plt.imshow(cubic,"gray"),plt.title("cubic")
plt.show()

结果展示

在这里插入图片描述

结果分析
INTER_NEAREST - 最近邻插值
根据名字也知道,这是插入的数值采用与原图像最近的那个点的数值,这种方法比较简单,但是人为痕迹有点重。
插值后的边缘效果:由于是以最近的点作为新的插入点,因此边缘不会出现缓慢的渐慢过度区域,这也导致放大的图像容易出现锯齿的现象
INTER_LINEAR - 线性插值
在这里插入图片描述

比如插值点为(x,y),这个像素是由围着他的4个点的像素决定的,
先求得:
f(x,0)=f(0,0)+x[f(1,0)-f(0,0)]
f(x,1)=f(0,1)+x[f(1,1)-f(0,1)]
在对求得值做一次线性插值:
f(x,y)=f(x,0)+y[f(x,1)-f(x,0)]
即可。这个准确的说是双线性
插值后的边缘效果:可以有效避免出现锯齿的现象

INTER_CUBIC –三次样条插值
基本的原理跟线性插值类似,都是做完一个方向再做另一个,不过他是用4*4的像素来计算的,但是在求权的时候不是线性的,而是逼近sin(x)/x:
在这里插入图片描述

插值后的边缘效果:可以有效避免出现锯齿的现象
总的来说,最近邻插值会出现锯齿现象,导致图片变形,感觉不太好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296281.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity新动画系统之动画层和动画遮罩

Unity新动画系统之动画层和动画遮罩 一、介绍二、动画骨骼遮罩层使用第一种就是create一个avatar Mask,如下:第二种遮罩,就是直接在动画剪辑的属性上更改,如图一为humanoid类型的动画剪辑属性: 一、介绍 之前分享过FSM动画控制系…

【AI提示词人物篇】创新艺术未来,让科技改变想象空间

AI 绘画学习难度和练习技巧 学习绘画的技巧 学习能难度: 外貌特征:AI需要学习识别和理解各种外貌特征,如发型、肤色、眼睛颜色等。这可能需要大量的训练数据和复杂的模型架构。 镜头提示:AI需要学习理解不同镜头提示的含义&…

PostGreSQL:货币类型

货币类型:money money类型存储固定小数精度的货币数字,小数的精度由数据库的lc_monetary设置决定。windows系统下,该配置项位于/data/postgresql.conf文件中,默认配置如下, lc_monetary Chinese (Simplified)_Chi…

SRE - 监控建设

监控⽂档 随着信息技术的迅速发展及其在商业和工业环境中的广泛应用,系统的可靠性成为了组织的生存之本。Site Reliability Engineering(SRE)作为一种实践的结合体,广泛地用于确保和提升软件系统的可靠性。其中,它的一个重要组成部分是制定和监控服务的关键性能指标(Ser…

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及风电不确定性的多场景多时段安全约束机组组合解耦求解方法》

这个标题涉及到一种解决在能源系统中考虑风电不确定性的方法。让我们逐步分解这个标题,以便更好地理解其含义: 计及风电不确定性: 这指的是在能源系统中,风力发电的产出具有不确定性。因为风速是难以预测的,风力发电的…

51单片机模数转换ADC原理与代码一

51单片机模数转换ADC原理与代码一 1.概述 这篇文章是模数转换的入门文章,这篇文章主要介绍模数的概念、原理、核心指标、专业术语,以及一个模数转换的实例代码实现检测电位器的数值变化。 2.ADC介绍 2.1.ADC概念 ADC(Analog-to-Digital Converter)是…

ZooKeeper 使用介绍和原理详解

目录 1. 介绍 重要性 应用场景 2. ZooKeeper 架构 服务角色 数据模型 工作原理 3. 安装和配置 下载 ZooKeeper 安装和配置 启动 ZooKeeper 验证和管理 停止和关闭 4. ZooKeeper 数据模型 数据结构和层次命名空间: 节点类型和 Watcher 机制&#xff…

助力打造清洁环境,基于YOLOv4开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统

公共社区环境生活垃圾基本上是我们每个人每天几乎都无法避免的一个问题,公共环境下垃圾投放点都会有固定的值班时间,但是考虑到实际扔垃圾的无规律性,往往会出现在无人值守的时段内垃圾堆放垃圾桶溢出等问题,有些容易扩散的垃圾比…

智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蛇优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蛇优化算法4.实验参数设定5.算法结果6.参考文…

Tomcat与Netty比较

Tomcat介绍Tomcat支持的协议Tomcat的优缺点Netty介绍Netty支持的协议Netty的优点和缺点Tomcat和Netty的区别Tomcat和Netty的应用场Tomcat和Netty来处理大规模并发连接的优化Tomcat与Netty的网络模型的区别Tomcat与Netty架构设计拓展 Tomcat介绍 Tomcat是一个免费的、开放源代码…

LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息

LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…

2024 年 22 款顶级免费数据恢复软件比较 [Windows 和 Mac]

适用于 Windows 和 Mac 用户的最佳数据恢复软件下载列表和比较,可快速恢复丢失的数据、已删除的文件、照片或格式化的分区数据: 数据恢复软件是一种从任何存储介质恢复丢失文件的应用程序。它可以恢复由于病毒攻击、硬盘故障或任何其他原因而意外删除或…