Diffusion扩散模型学习:图片高斯加噪

高斯分布即正态分布;图片高斯加噪即把图片矩阵每个值和一个高斯分布的矩阵上的对应值相加

1、高斯分布 np.random.normal

一维:

import numpy as np
import matplotlib.pyplot as pltdef generate_gaussian_noise(mean, std_dev, size):noise = np.random.normal(mean, std_dev, size) ## 设置均值mean和标准差std_dev
mean = 0.5
std = 0.1return noise# 生成高斯噪声
mean = 0
std_dev = 1
size = 10000
noise = generate_gaussian_noise(mean, std_dev, size)# 打印部分噪声数据
print(noise[:10])# 绘制噪声分布直方图
plt.hist(noise, bins=50, density=True)
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.title('Gaussian Noise Distribution')
plt.show()

在这里插入图片描述
二维矩阵(10*10的案例):

import numpy as np
import matplotlib.pyplot as pltdef generate_gaussian_noise(mean, std_dev, size):noise = np.random.normal(mean, std_dev, size)return noise# 生成高斯噪声矩阵
mean = 0
std_dev = 1
size = (10, 10)
noise_matrix = generate_gaussian_noise(mean, std_dev, size)# 绘制矩阵图像
plt.imshow(noise_matrix, cmap='gray')
plt.colorbar()  # 添加颜色条
plt.title('Gaussian Noise Matrix')
plt.show()

在这里插入图片描述

2、矩阵相加 cv2.add(matrix1, matrix2)、matrix1+matrix2

每个值对应相加

import numpy as np
import cv2# 创建两个矩阵
matrix1 = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]], dtype=np.uint8)matrix2 = np.array([[10, 20, 30],[40, 50, 60],[70, 80, 90]], dtype=np.uint8)# 使用 cv2.add 函数相加两个矩阵;也可以直接matrix1+matrix2,两种结果可能不一样,cv2.add加噪会更多
result = cv2.add(matrix1, matrix2)# 打印相加结果
print(result)

在这里插入图片描述
在这里插入图片描述

3、图片高斯加噪

1)一维图片加噪:

import numpy as np
import cv2def add_gaussian_noise(image, mean, std_dev):# 生成与图像大小相同的高斯分布随机噪声noise = np.random.normal(mean, std_dev, image.shape).astype(np.uint8)print(type(noise),noise.shape,noise)# 将噪声添加到原始图像noisy_image = cv2.add(image, noise)return noisy_image# 读取原始图像
image = cv2.imread(r"C:\Users\loong\Downloads\ma.jpg", 0)  # 灰度图像
print("image:",image.shape)# 添加高斯噪声
noisy_image = add_gaussian_noise(image, mean=0, std_dev=30)# 显示原始图像和添加噪声后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Noisy Image', noisy_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
如果是直接矩阵相加:

import numpy as np
import cv2def add_gaussian_noise(image, mean, std_dev):# 生成与图像大小相同的高斯分布随机噪声noise = np.random.normal(mean, std_dev, image.shape).astype(np.uint8)print(type(noise),noise.shape,noise)# 将噪声添加到原始图像noisy_image = image + noisereturn noisy_image# 读取原始图像
image = cv2.imread(r"C:\Users\loong\Downloads\ma.jpg", 0)  # 灰度图像
print("image:",image.shape)# 添加高斯噪声
noisy_image = add_gaussian_noise(image, mean=0, std_dev=30)# 显示原始图像和添加噪声后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Noisy Image', noisy_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

2)三维图片加噪:

import numpy as np
from PIL import Imagedef add_gaussian_noise(image, mean, std_dev):noise = np.random.normal(mean, std_dev, image.shape).astype(np.uint8)print(type(noise),noise.shape,noise)noisy_image = image + noisereturn noisy_image# 读取 JPG 图片
image_path = r"C:\Users\loong\Downloads\ma.jpg"
image = Image.open(image_path)# 将 PIL 图片转换为 NumPy 数组
image_array = np.array(image)
print("image:",image_array.shape)
# 设置高斯噪声参数
mean = 0
std_dev = 30# 添加高斯噪声
noisy_image = add_gaussian_noise(image_array, mean, std_dev)# 显示原图和带噪声图像
original_image = Image.fromarray(image_array)
noisy_image = Image.fromarray(noisy_image.astype(np.uint8))original_image.show(title='Original Image')
noisy_image.show(title='Noisy Image')

在这里插入图片描述
或者

import cv2
import numpy as np# 读取图像
image = cv2.imread(r"C:\Users\loong\Downloads\ma.jpg")# 生成噪声图像
noise = np.random.normal(0, 25, image.shape).astype(np.uint8)# 使用 cv2.add 函数添加噪声
noisy_image_cv2 = cv2.add(image, noise)# 显示原图和添加噪声后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Noisy Image (cv2.add)', noisy_image_cv2)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

3)模拟Diffusion正向扩散多次加噪效果
加噪10次

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread(r"C:\Users\loong\Downloads\ma.jpg")# 创建一个用于展示所有图片的画布
fig, axs = plt.subplots(2, 5, figsize=(15, 6))# 在第一个位置显示原图像
axs[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[0, 0].axis('off')
axs[0, 0].set_title('Original Image')# 在每一步添加噪声并展示图像
for i in range(1, 10):# 生成噪声图像noise = np.random.normal(0, 1.5, image.shape).astype(np.uint8)  # 降低噪声幅度# 使用 cv2.add 函数添加噪声noisy_image_cv2 = cv2.add(image, noise)# 在画布上显示图像axs[i//5, i%5].imshow(cv2.cvtColor(noisy_image_cv2, cv2.COLOR_BGR2RGB))axs[i//5, i%5].axis('off')axs[i//5, i%5].set_title(f'Noisy Image {i}')# 更新原图像为添加噪声后的图像,用于下一步的噪声添加image = noisy_image_cv2# 显示最终的画布
plt.tight_layout()
plt.show()

在这里插入图片描述

4、加噪和去噪初级效果实验

每次加噪声、去噪的噪声是一样的固定,方便查看效果

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread(r"C:\Users\loong\Downloads\ma.jpg")image1 = image
# 创建一个用于展示所有图片的画布
fig, axs = plt.subplots(2, 5, figsize=(15, 6))# 在第一个位置显示原图像
axs[0, 0].imshow(cv2.cvtColor(image1, cv2.COLOR_BGR2RGB))
axs[0, 0].axis('off')
axs[0, 0].set_title('Original Image')# 生成噪声图像
noise = np.random.normal(0, 15, image.shape).astype(np.uint8)  # 降低噪声幅度# 在每一步添加噪声并展示图像
for i in range(1, 5):# 使用 cv2.add 函数添加噪声noisy_image_cv2 = image+noise# 在画布上显示图像axs[i//5, i%5].imshow(cv2.cvtColor(noisy_image_cv2, cv2.COLOR_BGR2RGB))axs[i//5, i%5].axis('off')axs[i//5, i%5].set_title(f'Noisy Image {i}')# 更新原图像为添加噪声后的图像,用于下一步的噪声添加image = noisy_image_cv2# 在第五个位置显示原图像
axs[1, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[1, 0].axis('off')
axs[1, 0].set_title('Noisy Image')for i in range(6, 10):noisy_image_cv = image - noise# 在画布上显示图像axs[i//5, i%5].imshow(cv2.cvtColor(noisy_image_cv, cv2.COLOR_BGR2RGB))axs[i//5, i%5].axis('off')axs[i//5, i%5].set_title(f'Noisy Image {i}')image = noisy_image_cv# 显示最终的画布
plt.tight_layout()
plt.show()

下面第一行:第一张是原图,后面四张是依次加噪后图片
下面第二行:第一张是第一行加噪的最后一张,后面四张是依次去噪后图片

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296803.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java+SpringBoot实现人脸识别搜索

基于JavaSpringBoot实现人脸识别搜索 引言 背景介绍 结合人脸识别技术,在工厂、学校、商场、餐厅等人流密集的场所进行监控,对人流进行自动统计、识别和追踪,同时标记存在安全隐患的行为及区域,并发出告警提醒,加强…

图片素材管理软件Eagle for mac提高素材整理维度

Eagle for mac是一款图片素材管理软件,支持藏网页图片,网页截屏,屏幕截图和标注,自动标签和筛选等功能,让你设计师方便存储需要的素材和查找,提供工作效率。 Eagle mac软件介绍 Eagle mac帮助你成为更好、…

使用VisualStutio2022开发第一个C++程序

使用VisualStudio2022创建C项目 第一步:新建C的控制台应用 第二步:填写项目名称和代码存放位置,代码的存放目录不要有中文名 第三步:点击创建,VisualStudio会自动开始帮我们创建项目 第四步:项目创建好以后&…

由于找不到msvcp110.dll无法继续执行此代码详细解析

在使用电脑的过程中,我们偶尔会遇到一些错误提示,其中最常见的就是“缺少xxx.dll文件”。这些文件是动态链接库(DLL)文件,它们包含了许多程序运行所需的函数和资源。而msvcp110.dll就是其中一个常见的DLL文件。这个错误…

MySQL主从架构及读写分离实战

​​​​​​ 目录 一、实验目的与环境 二、基础环境介绍 三、搭建主从集群 1、理论基础 2、同步的原理 3、搭建主从集群 3.1 配置master主服务器 3.2 配置slave从服务 3.3 主从集群测试 3.4 集群搭建扩展: 3.5、GTID同步集群 4、集群扩容 5、半同步复…

【XML】TinyXML 详解(一):介绍

【C】郭老二博文之:C目录 1、简介 优点: TinyXML 是一个简单、小型的 C XML 解析器,可以轻松集成到项目中。 TinyXML 解析 XML 文档,并根据该文档构建可读取、修改和保存的文档对象模型 (DOM) TinyXML 是在 ZLib 许可下发布的&a…

【K8s】1# 使用kuboard-spray安装K8s集群

文章目录 搭建k8s集群1.推荐配置1.1.服务器配置1.2.软件版本 2.使用Kuboard-Spray安装k8s集群2.1.配置要求2.2.操作系统兼容性2.3.安装 Kuboard-Spray2.4.加载离线资源包2.5.规划并安装集群2.6.安装成功2.7.访问集群 3.涉及的命令3.1.linux 4.问题汇总Q1:启动离线集…

linux cpu调度分析

一、cpu调度调试方法 echo 0 > /sys/kernel/debug/tracing/tracing_on echo > /sys/kernel/debug/tracing/trace echo 30720 > /sys/kernel/debug/tracing/buffer_size_kb echo nop > /sys/kernel/debug/tracing/current_tracer echo sched_switch sched_wakeup s…

AndroidStudio无法新建Java工程解决办法

我用的 AS 版本是 Android Studio Giraffe | 2022.3.1 Build #AI-223.8836.35.2231.10406996, built on June 29, 2023 以往新建工程都是 New project >> Empty Activity , 有个选择 Java 还是 Kotlin 语言的选项, 之后会默认生成一个 MainActi…

【每日一题】收集足够苹果的最小花园周长

文章目录 Tag题目来源解题思路方法一:二分枚举答案 写在最后 Tag 【二分枚举答案】【二维网格】【2023-12-24】 题目来源 1954. 收集足够苹果的最小花园周长 解题思路 方法一:二分枚举答案 思路 通过如下过程,我们可以求出边长为 2n 时&…

JavaEE:CAS详解

一.什么是CAS CAS: 全称 Compare and swap ,字面意思 :” 比较并交换 “ ,一个 CAS 涉及到以下操作: 我们假设内存中的原数据V,旧的预期值A,需要修改的新值B。 我们来进行操作: 1. 比较 V 和 A 是否相等。…

安装nodejs,配置环境变量并将npm设置淘宝镜像源

安装nodejs并将npm设置淘宝镜像源 1. 下载nodejs 个人不喜欢安装包,所以是下载zip包的方式。这里我下载的node 14解压包版本 下载地址如下:https://nodejs.org/dist/v14.15.1/node-v14.15.1-win-x64.zip 想要其他版本的小伙伴去https://nodejs.org/di…