好难,看解析:
# 双指针
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:size = len(heights)# 两个DP数列储存的均是下标indexmin_left_index = [0] * sizemin_right_index = [0] * sizeresult = 0# 记录每个柱子的左侧第一个矮一级的柱子的下标min_left_index[0] = -1 # 初始化防止while死循环for i in range(1, size):# 以当前柱子为主心骨,向左迭代寻找次级柱子temp = i - 1while temp >= 0 and heights[temp] >= heights[i]:# 当左侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_left_index[temp]# 当找到左侧矮一级的目标柱子时min_left_index[i] = temp# 记录每个柱子的右侧第一个矮一级的柱子的下标min_right_index[size-1] = size # 初始化防止while死循环for i in range(size-2, -1, -1):# 以当前柱子为主心骨,向右迭代寻找次级柱子temp = i + 1while temp < size and heights[temp] >= heights[i]:# 当右侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_right_index[temp]# 当找到右侧矮一级的目标柱子时min_right_index[i] = tempfor i in range(size):area = heights[i] * (min_right_index[i] - min_left_index[i] - 1)result = max(area, result)return result# 单调栈
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:# Monotonic Stack'''找每个柱子左右侧的第一个高度值小于该柱子的柱子单调栈:栈顶到栈底:从大到小(每插入一个新的小数值时,都要弹出先前的大数值)栈顶,栈顶的下一个元素,即将入栈的元素:这三个元素组成了最大面积的高度和宽度情况一:当前遍历的元素heights[i]大于栈顶元素的情况情况二:当前遍历的元素heights[i]等于栈顶元素的情况情况三:当前遍历的元素heights[i]小于栈顶元素的情况'''# 输入数组首尾各补上一个0(与42.接雨水不同的是,本题原首尾的两个柱子可以作为核心柱进行最大面积尝试heights.insert(0, 0)heights.append(0)stack = [0]result = 0for i in range(1, len(heights)):# 情况一if heights[i] > heights[stack[-1]]:stack.append(i)# 情况二elif heights[i] == heights[stack[-1]]:stack.pop()stack.append(i)# 情况三else:# 抛出所有较高的柱子while stack and heights[i] < heights[stack[-1]]:# 栈顶就是中间的柱子,主心骨mid_index = stack[-1]stack.pop()if stack:left_index = stack[-1]right_index = iwidth = right_index - left_index - 1height = heights[mid_index]result = max(result, width * height)stack.append(i)return result