论文解读--Compensation of Motion-Induced Phase Errors in TDM MIMO Radars

TDM MIMO雷达运动相位误差补偿

摘要

        为了实现高分辨率的到达方向估计,需要大孔径。这可以通过提供宽虚拟孔径的多输入多输出雷达来实现。但是,它们的工作必须满足正交发射信号的要求。虽然发射单元的时分复用是一种低硬件成本的正交实现,但在非平稳情况下会出现相位误差。这篇文章简要地讨论了运动引起的相位误差的问题,并描述了处理步骤,没有额外操作就可以减少(误差)。仿真和实测数据验证了该方法的有效性。

1 介绍

        目前汽车雷达的发展方向是多输入多输出(MIMO)系统,由M个发射器和N个接收器组成。它们提供了大量的虚拟天线元件和高角度分辨率,与传统系统相比,这减少了硬件和孔径尺寸的工作量。但实现时需要传输正交信号。在线性调频chirp序列雷达中,这通常是通过时间、频率或码分复用来完成的。这篇文章的重点是时分复用(TDM)方案,这是非常常用的[1]-[4]。

        chirp序列雷达发射一系列线性频率斜坡。每个的基带时间样本存储在一个矩阵中,用二维傅里叶变换提取距离和速度。这导致了每个单通道的距离-多普勒频谱。当采用TDM MIMO方案时,每次发送单个chirp后,都会改变主动发射单元。图1所示为两个发射机(M=2)的示例。每个发射机和每个接收机的几何位置形成一个虚拟阵列,该阵列的虚拟元素最多有M*N个。为虚拟阵列的每个阵元找到了距离-多普勒频谱。

图1 在示例性TDM MIMO方案中,发射机Tx1和Tx2以交替方式工作。Tr限制了不模糊多普勒频率[5]。

        天线单元之间的相位差用于到达方向(DoA)估计。在非MIMO线性阵列中,一个信号在两个接收信道上的相位差为

          (1)

        其中,θ为信号的入射角,k为波数,d为阵元之间的距离。在如图1所示的TDM MIMO系统中,由于发射机Tx1和Tx2之间的切换时间Tr/2,必须考虑额外的相位差。这使(1)变成

          (2)

        目标运动产生多普勒频率fD,引入了额外的相位项。对于具有高fD的目标,受到此误差的强烈影响。一般来说,对于M个发射机,在第M个发射机处的相位关系Txm为

          (3)

        为了补偿运动引起的相位误差,[6]提出在虚拟孔径中创建重叠阵元。这些阵元用于估计和修正误差;然而,这是以(M−1)个独立虚拟阵元为代价的,因此减小了最大孔径尺寸或最大通道数量。优化发射机的切换方案以减小相位误差在[7]中进行了讨论。文献[8]介绍了运动误差的估计和插值。另一种方法是通过频率坡道的交错传输来减小误差[9]。

        在这篇文章中,介绍了一种直接的方法,并演示了用基本的信号处理技术处理chirp序列雷达的运动引起的相位误差。这种方法不需要任何额外的硬件工作,并且只有很小的处理需求。

2 相位误差补偿

        在本节中,描述了运动引起的相位误差的来源,并调整了用于提取速度的离散傅立叶变换(DFT)以减轻相位误差。

        单频chirp l = 0,1,2,…的基带时间信号的模型与[5]类似为

          (4)

        其中c0为光速,fc为chirp的中心频率,R为目标距离。距离相关频率为fR = 2BR/(c0Tc)。对于持续时间短的Tc和高带宽B的chirp,通常假设fR >> fD。傅里叶变换F(sTxm (t, l))得到chrip l的距离谱

        

        图2显示了在单个发射机Tx1的情况下,单个目标在多个频率chirp下的复矢量STx1 (fR, l)。在这种非MIMO设置中,计算所有chirp的第二次傅立叶变换以提取速度。对于频率fD,傅里叶变换将所有向量旋转到相位φTx1 (l = 0),得到最大值

          (6)

        图2 在单发射机系统中,单个目标在两个连续chirp之间的相位差为2π fDTr。对于多普勒频率的提取,傅里叶变换将所有向量旋转到相位φTx1 (l = 0),用箭头表示。矢量的构造叠加导致频谱在fD处出现一个峰。

        在TDM MIMO的情况下,存在第二个发射机Tx2。如图1所示,每次连续的chirp后,活动的发射机被切换。在不失一般性的前提下,假设φ = 0。图3显示了DFT如何将Tx2对应的所有向量变换为相位φTx2 (l = 0)。Tx1对应的所有向量的行为仍然如图2所示引入运动引起的系统误差φerr = 2π fDTr /2

       图3 在TDM MIMO雷达中,每个发射机的chirp都是独立处理的。当Tx1的DFT将所有相位转换为φTx1 (l = 0)时,Tx2的相位被转换为φTx2 (l = 0),这导致系统相位误差φerr = 2π fDTr /2。

        为了减轻这种误差,改变多普勒处理。Tx1对应的chirp仍然用正常的DFT(6)进行处理。对于Tx2传输的chirp,DFT调整为

          (7)

        通过这种稍微调整的DFT, Tx2的chirp相位也被转换为相位φTx1 (l = 0)。对于θ≠0,根据(1)将一个恒定相位添加到φTx2 (l)中。由于该相移与l无关,因此可以从(7)的和中提取。因此,所提出的处理对任何θ都有效。[10]中提出了一种减少多普勒模糊的相关处理方法。

        将该方案推广到M个发射机,计算发射机Txm的多普勒DFT

          (8)

        由于DFT的线性,(8)在多目标情况下也成立。注意,这种处理方式相当于在常规DFT处理之前在多普勒维中进行交错的零填充。这意味着对于Tx1传统DFT的输入是向量

          (9)

        对于Tx2,它是

          (10)

3 仿真和测量

        仿真比较了应用传统离散傅里叶变换(6)和改进的离散傅里叶变换(8)对运动目标的DoA估计与静态目标的DoA估计。仿真雷达采用表1中的参数,采用TDM MIMO阵列,其中两个发射机相距5λ,十个接收机间隔λ/2。它形成一个20元均匀线性虚拟阵列,阵元间距λ/2。所有的DoA估计都是用Bartlett波束形成器完成的[11]。

表1 仿真和测量的调制参数

        在无噪声仿真中,假设目标距离为30m,θ=15°,速度为v = 0和v = 18m/s。图4显示了包含目标的距离-多普勒单元的DoA估计。v = 0的估计结果为15.2°,最接近15°的实际DoA。此估计用作参考。当v ≠ 0时,用(6)确定距离-多普勒频谱时,运动引起的相位误差使估计的DoA变为18.5°,导致频谱变形。然而,当使用(8)进行多普勒处理时,v = 18m/s的估计与静态参考相同。

        测量评估是用一个TDM MIMO雷达进行的,该雷达有两个发射机和十个接收机,调制参数见表1。虚拟阵列是一个均匀的线性阵列,元件间距为0.545λ,包含一个重叠阵元。传感器安装在一辆速度约为18米/秒的汽车上。采用传统的DFT处理(6)和新提出的处理(8)计算距离-多普勒矩阵。在距离-多普勒频谱中选择一个明显的目标峰进行DoA估计。图5显示了该峰值在虚拟阵列位置处的相位。在位置10(重叠阵元),两个相位包含在图中。转换前的虚拟阵元属于第一发射机,其他虚元属于第二发射机。在重叠阵元位置,由于运动引起的相位误差,常规处理(6)存在1.54 rad的相位不连续。相位校正距离-多普勒处理(8)没有显示出如此严重的偏差。相反,重叠阵元位置处的相位值几乎相同。

        图6给出了采用式(6)进行距离多普勒处理、采用式(6)进行距离多普勒处理并根据[6]进行重叠阵元相位校正、采用单个发射机数据[单输入多输出(SIMO)]进行距离多普勒估计、采用式(8)进行距离多普勒处理的几种情况对应的DoA估计。

        (6)的应用导致DoA估计出现两个宽峰。总体最大值出现在DOA为1°处。当使用重叠阵元进行相位校正时,估计结果在3.9°处出现一个窄峰,曲线形状的旁瓣明显降低。SIMO估计孔径较小,分辨率较差;然而,4.3°DoA估计的最大值与之前的估计非常相似。用(8)进行距离多普勒处理后的MIMO DoA估计,估计DoA为3.9°,曲线形状与使用重叠阵元处理后的DoA估计基本一致;然而,它在虚拟孔径不需要重叠的阵元。

       图4 不同速度v = 0和v = 18m/s下单个目标在15°方向上的仿真。当v = 0时,不发生相位误差。在v = 18m/s的情况下,用(6)进行多普勒处理,运动引起的相位误差会导致错误的DoA估计和频谱变形。经调整后的DFT(8)进行多普勒处理时,DoA估计与不考虑速度的DoA估计相同。

图5 在MIMO虚拟阵列的阵元测量相位。位置10的阵元在虚拟孔径中出现两次。

图6 测量为18m/s的DoA估计

4 结论

        这篇文章介绍了一种距离-多普勒处理,以减轻TDM MIMO雷达中运动引起的相位误差,而无需额外的硬件努力,如重叠阵元。仿真结果表明,该处理方法在动态场景下的DoA估计性能与传统处理方法在静态场景下的DoA估计性能相同。测量结果也验证了运动引起的相位误差的补偿。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/298791.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

家庭教育|孩子教育小妙招,让孩子更优秀

Q: 什么是暗示效应? A: 暗示效应是指在无对抗的条件下,用含蓄、抽象诱导的间接方法对人们的心理和行为产生影响,从而诱导人们按照一定的方式去行动或接受一定的意见,使其思想、行为与暗示者期望的目标相符合。一般说来&#xf…

SpringMVC 高级

1 SpringMVC 概述 三层架构 表现层:负责数据展示 业务层:负责业务处理 数据层:负责数据操作 概念 Spring MVC 是Spring提供的一个实现了Web MVC设计模式的轻量级Web框架。 MVC(Model View Controller)&#xff0…

Python 简易图形界面库easygui 对话框大全

easygui 安装 C:\> pip install easygui Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting easygui Using cached https://pypi.tuna.tsinghua.edu.cn/packages/8e/a7/b276ff776533b423710a285c8168b52551cb2ab0855443131fdc7fd8c16f/easygui-…

解读SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC

SPP与SPPF 一、SPP的应用的背景 在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固定尺寸的该怎么办呢? 通常来说,我们有以下几种方法: (1)对输入进行resize操作,让他们…

(1)(1.11) SiK Radio v2(一)

文章目录 前言 1 概述 2 特点 3 状态LED灯 前言 SiK 遥测无线电是在自动驾驶仪和地面站之间建立遥测连接的最简单方法之一。本文提供了如何连接和配置无线电的基本用户指南。 3DR Radio v2(SiKRadio 的消费者版本) !Note 本页面以前的…

JavaOOP篇----第十七篇

系列文章目录 文章目录 系列文章目录前言一、怎么在JDBC内调用一个存储过程二、是否了解连接池,使用连接池有什么好处?三、你所了解的数据源技术有那些?使用数据源有什么好处?四、&和&&的区别五、静态内部类如何定义前言 前些天发现了一个巨牛的人工智能学习网…

C++力扣题目20--有效的括号

给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应的相同类型的左括…

kantts个性化自动化训练

官网的都是手动训练,我做了一个自动化训练,执行一下,然后全部就能训练完。 说明: audio是存放原始音频的位置,auto_train_main是核心自动化代码。 auto_train_main代码: # -*- coding: utf-8 -*- import string import random …

又一款 AI 工具火爆全网!DomoAI 实测体验如何(二)

上一篇介绍了 DomoAI 的两种生成视频的方式: 1、根据上传的视频生成多种风格的视频 2、根据上传的图片生成视频 下图就是通过 DomoAI 生成的一组视频。 DomoAI测试视频 对制作过程感兴趣的可以看上一篇: 程序员X小鹿:【AI 视频】又一款 AI…

众和策略:突然,科创板在审最大IPO终止

2月22日晚,传来科创板在审最大IPO蜂巢动力中止的音讯。 蜂巢动力主营新动力轿车动力电池及储能电池系统的研制、出产和出售。陈说期内(2019年至2021年,及2022年上半年)公司业绩继续大额赔本,归母净获利分别为-3.26亿元…

干货分享 | TSMaster报文发送的信号生成器操作说明

信号生成器功能是TSMaster分析中的报文发送模块。信号生成器用于发送和配置每个 CAN/LIN信号的值变化行为(简而言之,这是一个可以控制和调整CAN/LIN信号值的功能)。而我们可选择的信号生成器类型有8种,今天重点和大家分享一下关于TSMaster信号生成器的8种…

【数据结构】——期末复习题题库(1)

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…