AIGC|什么是深度学习?

深度学习是近年来人工智能领域最热门的话题之一。它是一种通过模拟人脑神经网络工作原理,进行大规模数据处理和模式识别的机器学习方法。随着计算能力的提升和大数据时代的到来,深度学习在图像识别、语音识别、自然语言处理等领域取得了突破性进展,成为推动人工智能技术发展的重要力量。

本文将简单介绍深度学习的基本原理和发展趋势,帮助读者更好地了解这一前沿技术。

深度学习是一种基于人工神经网络的表征学习算法,它可以从大量的数据中自动学习特征和规律,从而实现智能化的任务。深度学习中的人工神经网络是一种模拟生物神经系统的计算模型,它由多个简单的单元组成,通过连接权重和激活函数来传递和处理信息。作为机器学习领域的一个重要分支,深度学习被认为是实现真正人工智能的关键技术之一。

图表1 机器学习分支

近年来,深度学习在学术界和工业界都取得了显著的进展和应用,它已经改变了许多领域和已有产品的形态,例如生活中的在线广告投放、视频推荐、垃圾邮件过滤、多语言翻译等等都有深度学习的影子。将深度学习技术融入产品之中已经成为互联网公司提升产品用户体验的重要方向,以Google为例,2012年到2016年间Google内部基于深度学习的项目数量呈指数级增长。

图表2 Google内部基于深度学习技术的项目数量

深度学习在人工智能领域掀起了一股热潮,现在CV和NLP领域的顶会每年都有上千篇论文接收,但是实际上深度学习的发展并非是一帆风顺的。深度学习的起源可以追溯到上世纪50年代,当时研究人员试图模拟人脑的神经元结构以实现智能行为。在1958年 Frank Rosenblatt提出了Perceptrons(感知器),这是一种二元线性分类器,但是这种单层的网络结构有个致命缺点是无法处理线性不可分的问题。到了1969年,Marvin Minsky和Seymour Papert在《Perceptrons》一书中对感知器为代表的单层神经网络的功能和局限进行了分析,证明了Perceptron不能解决线性不可分问题,自此之后神经网络的发展进入了低谷期。

图表3 Perceptron结构

1986 年Geoffrey Hinton发表了一篇名为《Learning representations by back-propagating errors》的论文,提出了Backpropagation算法,对解决非线性分类和学习的问题非常有效果,这篇论文也成为深度学习领域最有影响力的论文之一。自此深度学习开始有了新的发展,但是实际上Backpropagation算法仍然存在局限性,网络结构一旦超过 3 层的就训练不出好的结果。这些早期的神经网络模型受限于当时的计算能力以及缺乏足够的训练数据,模型性能一直无法取得重大突破。

图表4 线性可分和线性不可分

2009 年吴恩达等人开始使用大规模的GPU进行深度学习训练,加快了深度神经网络的发展。2012 年 Alex Krizhevskyh和Hinton利用CNN构建的8层神经网络AlexNet夺得ImageNet冠军,达到最低的15.3%的Top-5错误率,远远低于第二名SVM(支持向量机)的分类错误率。AlexNet夺冠标志着深度学习在计算机视觉领域的重要突破,在《ImageNet Classification with Deep Convolutional Neural Networks》这篇论文中,Alex Krizhevskyh等人提出模型的深度对于提高性能至关重要。自此构建深层网络处理任务在计算机视觉领域吸引了众多学者的关注,大量围绕深层神经网络的论文涌现。

深度学习的主要研究方向有计算机视觉(Computer Vision)、自然语言处理和语音识别(Natural Language Processing)。计算机视觉是用计算机代替人眼对目标进行识别、跟踪和测量等机器视觉。我们熟知的OCR 、人脸识别很多都是利用 CV 技术的开发取得了很好的识别效果。在CV领域最热门的问题当属自动驾驶,这个难题吸引了大量的学者和企业投入资源进行研究,例如特斯拉在自动驾驶上一直坚持纯视觉的方案,认为基于深度学习的纯视觉方案就能够解决自动驾驶面临的技术问题,不过目前距离实现完全的自动驾驶仍然有很长的距离。

如何让程序读懂人类语言一直是NLP领域的难题,深度学习给NLP领域带来了革命性的变革,通过 word embeddings(词嵌入)可以让算法自动理解一些类似的词,这在 NLP 领域是重大的突破。随着Word2Vec、GloVe和BERT等词嵌入模型的引入,深度学习开始能够从大规模文本数据中自动学习单词和短语的语义表示,这使得机器在理解和生成自然语言方面取得了重大进展,如情感分析、问答系统和自动摘要等。基于 RNN、LSTM 构建的模型在处理一些预测任务时取得了不错的效果,在实际情况中也有很多的应用。例如在武汉疫情期间,钟南山团队在 OA 期刊上发表了论文《Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions》,这篇论文就利用 LSTM 对疫情趋势进行了预测,原文的结论如下:

“The LSTM model is a type of RNN that was trained using the 2003 SARS epidemic statistics incorporating the COVID-19 epidemiological parameters, such as the probability of transmission, incubation rate. The probability of recovery ordeath and contact number. The LSTM model predicted that new infections will peak on February 4, resulting in 95,000 cases by the end of April (Figure 3A). We then plotted the number of daily new cases derived from SEIR, LSTM and the actual reported data for China. There was a remarkable fit between the actual number of new confirmed cases and the LSTM-predicted curve between January 22 and the February 10 (Figure 3B). Both the SEIR and LSTM-model predicteda peak of 4,000 daily infection between February 4 and 7.The SEIR model also predicted several smaller peaks of new infections in mid to late February.”

我们可以看到 LSTM 的预测和实际的情况相比很接近,比常用的传染病模型 SEIR 更加的接近实际情况。

图表5 SEIR和LSTM预测图

但是目前在 NLP 领域中,Transformer是学术界和工业界炙手可热的宠儿。2017 年 Google brain 的研究员发表了《attention is all you need》,这篇论文提出了一个Transformer的结构,在深度学习领域掀起了一阵狂潮,随后基于 Transformer 结构的任务处理的相关研究大量出现,并在工业界取得良好的效果,Transformer 似乎有统一整个 NLP 领域的趋势。

图表6 transformer结构

在Transformer之前,CNN、RNN、LSTM 这些传统的神经网络被应用于各种场景的任务处理,但是当Transformer出现后,许多之前基于传统结构的任务都开始使用 Transformer 进行模型训练。例如GPT-3.5就使用了Transformer架构,能够在输入序列中捕捉关键的上下文信息,使得ChatGPT能够更好地理解上下文和生成连贯的回答。

不可否认Transformer在很多场景的任务下的确要优于传统的 CNN、RNN 、LSTM等结构,但是Transformer 并非是一个完美无缺的结构,自身也有很多的问题,例如需要大量的样本进行训练和调优,训练成本很高等问题。有人甚至讽刺道“Money is all you need”,没有足够的GPU算力支撑很难做基于 Transformer 的大型训练任务。另外,Transformer缺乏对时间维度的建模,相比之下 LSTM在时序任务的表现要更加的优秀。

深度学习的快速发展主要得益于两个关键因素:大规模数据和强大的计算能力。互联网和社交媒体的兴起为我们提供了海量的数据,使得深度学习模型可以从中进行训练和学习。另外, GPU的出现以及分布式计算框架(如TensorFlow和PyTorch)的发展,大大加速了深度学习模型的训练和推理速度。

虽然深度学习在人工智能领域取得了巨大的成功,但仍然存在一些挑战和限制。例如深度学习模型通常需要大量的训练数据,对于某些领域或任务来说,获取这些数据可能非常困难。此外,模型的解释性也是一个问题,深度学习模型往往被视为“黑盒”,难以解释其决策的依据。我们可以期待随着深度学习的发展,现阶段所面临的问题终会得到解决,我们离人工智能时代也会越来越近。

参考文献:

  1. Li Y. Deep reinforcement learning: An overview[J]. arXiv preprint arXiv:1701.07274, 2017.
  2. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
  3. Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of thoracic disease, 2020, 12(3): 165.
  4. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.

更多AI小知识欢迎关注“神州数码云基地”公众号,回复“AI与数字化转型”进入社群交流

版权声明:文章由神州数码武汉云基地团队实践整理输出,转载请注明出处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/299321.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浮点数的转换--IEEE 754

IEEE754标准是一种浮点数表示标准,一般分为 单精度(32位的二进制数);双精度(64位的二进制数) 根据国际标准IEEE754,任意一个二进制浮点数V可以表示为下面形式: V (-1)^s *&#…

【技术分享】单网口远程透传网关快速实现昆仑通态触摸屏程序远程上下载及监控

准备工作 一台可联网操作的电脑一台单网口的远程透传网关及博达远程透传配置工具网线一条,用于实现网络连接和连接触摸屏一台昆仑通态触摸屏及其编程软件一张4G卡或WIFI天线实现通讯(使用4G联网则插入4G SIM卡,WIFI联网则将WIFI天线插入USB口&#xff0…

python的import功能,你需要了解的导入机制

1 基本概念 概念 解释 import 即导入,方式就是在import位置将代码文件拷贝过去。 模块(module) python中一个.py文件定义为一个模块 常用的几种模块导入方式: import module_nameimport module_name.function_nameimport mod…

AI Earth平台简介

AI Earth地球科学云平台由达摩院-视觉技术实验室打造,基于地球科学智能计算分析方面的创新研究,致力于解决地球科学领域基础性、前沿性、业务性问题,目标成为国内一流的地球科学云计算平台。(摘自官网) 下面&#xff…

C++11(上):新特性讲解

C11新特性讲解 前言1.列表初始化1.1{ }初始化1.2std::initializer_list 2.类型推导2.1 auto2.2 typeid2.3 decltype 3.范围for4.STL的变化4.1新容器4.2容器的新方法 5.右值引用和移动语义5.1 左值引用和右值引用5.2 左值引用与右值引用比较5.3 右值引用的使用场景5.4 右值、左值…

华清远见嵌入式学习——ARM——作业3

作业要求: 代码效果图: 代码: led.h #ifndef __LED_H__ #define __LED_H__#define RCC_GPIO (*(unsigned int *)0x50000a28) #define GPIOE_MODER (*(unsigned int *)0x50006000) #define GPIOF_MODER (*(unsigned int *)0x50007000) #defi…

vue3使用i18n 实现国际化

目录 一、需求 二、实现原理 三、实现步骤 1.安装依赖 vue-i18n 2.配置语言包 3.如何使用 模板中使用 ts动态t函数使用 4.如何切换语言 一、需求 博主最近重构了自己的单页面SSR博客,打算添加国际化功能,众所周知,实现国际化已是一…

Typora图床搭建PicGo+阿里云OSS(免费白嫖)

文章目录 1. 目的2. 方案2.1 Typora2.2 PicGo2.3 阿里云OSS 3. 开始配置3.1 获取KeyId和KeySecret3.2 创建Bucket3.3 配置PicGo3.4 配置Typora 4. 成功结束 1. 目的 本地使用Typora编写markdown文档的时候,文档中的图片路径是本地的。这个时候如果需要将该markdown…

将特定目录添加到 Python 搜索路径

将特定目录添加到 Python 搜索路径 最近在使用青云1000(昇腾310)时,有很多华为提供的第三方库,不是通过pip安装的那些,在使用时不能直接import直接使用,简而言之就是python找不到这些库,下面提供三种措施 1. 使用 sy…

notepad++打开大文件失败问题

问题 :::warning 打开300多兆的日志文件提示文件太大打不开,但是其他版本的能打开 ::: 解决 换版本,没有好办法,换个版本就可以了

JavaWeb后门(webshell)基础

0x00 基础 JSP JSP全称为JavaServer Pages&#xff0c;是一种用于开发支持动态内容的Web页面的技术。它有助于开发人员通过使用特殊的JSP标记在HTML页面中插入Java代码&#xff0c;其中大多数以<&#xff05;开头&#xff0c;以&#xff05;>结尾。Java是一种通用的计算…

实战 9 权限菜单管理

目录 1、权限菜单后端接口 2、查询权限菜单列表 2.1 设计效果图 2.2 menuList.vue 3、 新增权限菜单 3.1 新增权限菜单窗口代码 3.2 选择所属菜单代码 3.3 封装图标选择器 3.4 新增、编辑和删除权限菜单 1、权限菜单后端接口 package com.cizhu.service;import com.ci…