Java之Atomic 原子类总结

Java之Atomic 原子类总结

Atomic 原子类介绍

Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。

所以,所谓原子类说简单点就是具有原子/原子操作特征的类。

并发包 java.util.concurrent 的原子类都存放在java.util.concurrent.atomic下,如下图所示。

JUC原子类概览

基本类型原子类

  • AtomicInteger:整型原子类
  • AtomicBoolean:布尔型原子类
  • AtomicLong:长整型原子类
public final int get() //获取当前的值
public final int getAndSet(int newValue)//获取当前的值,并设置新的值
public final int getAndIncrement()//获取当前的值,并自增
public final int getAndDecrement() //获取当前的值,并自减
public final int getAndAdd(int delta) //获取当前的值,并加上预期的值
boolean compareAndSet(int expect, int update) //如果输入的数值等于预期值,则以原子方式将该值设置为输入值(update)
public final void lazySet(int newValue)//最终设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。

AtomicInteger 类使用示例 :

import java.util.concurrent.atomic.AtomicInteger;public class AtomicIntegerTest {public static void main(String[] args) {int temvalue = 0;AtomicInteger i = new AtomicInteger(0);temvalue = i.getAndSet(3);System.out.println("temvalue:" + temvalue + ";  i:" + i); //temvalue:0;  i:3temvalue = i.getAndIncrement();System.out.println("temvalue:" + temvalue + ";  i:" + i); //temvalue:3;  i:4temvalue = i.getAndAdd(5);System.out.println("temvalue:" + temvalue + ";  i:" + i); //temvalue:4;  i:9}}

基本数据类型原子类的优势

通过一个简单例子带大家看一下基本数据类型原子类的优势

1、多线程环境不使用原子类保证线程安全(基本数据类型)

class Test {private volatile int count = 0;//若要线程安全执行执行count++,需要加锁public synchronized void increment() {count++;}public int getCount() {return count;}
}

2、多线程环境使用原子类保证线程安全(基本数据类型)

class Test2 {private AtomicInteger count = new AtomicInteger();public void increment() {count.incrementAndGet();}//使用AtomicInteger之后,不需要加锁,也可以实现线程安全。public int getCount() {return count.get();}
}

AtomicInteger 线程安全原理简单分析

AtomicInteger 类的部分源码:

    // setup to use Unsafe.compareAndSwapInt for updates(更新操作时提供“比较并替换”的作用)private static final Unsafe unsafe = Unsafe.getUnsafe();private static final long valueOffset;static {try {valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));} catch (Exception ex) { throw new Error(ex); }}private volatile int value;

AtomicInteger 类主要利用 CAS (compare and swap) + volatile 和 native 方法来保证原子操作,从而避免 synchronized 的高开销,执行效率大为提升。

CAS 的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset() 方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址。另外 value 是一个 volatile 变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。

数组类型原子类

使用原子的方式更新数组里的某个元素

  • AtomicIntegerArray:整形数组原子类
  • AtomicLongArray:长整形数组原子类
  • AtomicReferenceArray:引用类型数组原子类

上面三个类提供的方法几乎相同,所以我们这里以 AtomicIntegerArray 为例子来介绍。

AtomicIntegerArray 类常用方法

public final int get(int i) //获取 index=i 位置元素的值
public final int getAndSet(int i, int newValue)//返回 index=i 位置的当前的值,并将其设置为新值:newValue
public final int getAndIncrement(int i)//获取 index=i 位置元素的值,并让该位置的元素自增
public final int getAndDecrement(int i) //获取 index=i 位置元素的值,并让该位置的元素自减
public final int getAndAdd(int i, int delta) //获取 index=i 位置元素的值,并加上预期的值
boolean compareAndSet(int i, int expect, int update) //如果输入的数值等于预期值,则以原子方式将 index=i 位置的元素值设置为输入值(update)
public final void lazySet(int i, int newValue)//最终 将index=i 位置的元素设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。

引用类型原子类

基本类型原子类只能更新一个变量,如果需要原子更新多个变量,需要使用 引用类型原子类。

  • AtomicReference :引用类型原子类
  • AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。
    • 解决修改过几次
  • AtomicMarkableReference:原子更新带有标记的引用类型。该类将 boolean 标记与引用关联起来
    • 解决是否修改过,它的定义就是将标记戳简化为true/false,类似于一次性筷子
public class AtomicMarkableReferenceDemo {static AtomicMarkableReference markableReference = new AtomicMarkableReference(100, false);public static void main(String[] args) {new Thread(() -> {boolean marked = markableReference.isMarked();System.out.println(Thread.currentThread().getName() + "\t" + "默认标识: " + marked);//t1	默认标识: falsetry {TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}markableReference.compareAndSet(100, 1000, marked, !marked);//t2	默认标识: false}, "t1").start();new Thread(() -> {boolean marked = markableReference.isMarked();System.out.println(Thread.currentThread().getName() + "\t" + "默认标识: " + marked);//t2	t2线程CASResult:falsetry {TimeUnit.SECONDS.sleep(2);} catch (InterruptedException e) {e.printStackTrace();}boolean b = markableReference.compareAndSet(100, 2000, marked, !marked);System.out.println(Thread.currentThread().getName() + "\t" + "t2线程CASResult:" + b);System.out.println(Thread.currentThread().getName() + "\t" + markableReference.isMarked());//t2	trueSystem.out.println(Thread.currentThread().getName() + "\t" + markableReference.getReference());//t2	1000}, "t2").start();}
}

对象的属性修改类型原子类

如果需要原子更新某个类里的某个字段时,需要用到对象的属性修改类型原子类。

  • AtomicIntegerFieldUpdater:原子更新整形字段的更新器
  • AtomicLongFieldUpdater:原子更新长整形字段的更新器
  • AtomicReferenceFieldUpdater:原子更新引用类型里的字段的更新器

要想原子地更新对象的属性需要两步。第一步,因为对象的属性修改类型原子类都是抽象类,所以每次使用都必须使用静态方法 newUpdater()创建一个更新器,并且需要设置想要更新的类和属性。第二步,更新的对象属性必须使用 public volatile 修饰符。

上面三个类提供的方法几乎相同,所以我们这里以 AtomicIntegerFieldUpdater为例子来介绍。

AtomicIntegerFieldUpdater 类使用示例 :

import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;public class AtomicIntegerFieldUpdaterTest {public static void main(String[] args) {AtomicIntegerFieldUpdater<User> a = AtomicIntegerFieldUpdater.newUpdater(User.class, "age");User user = new User("Java", 22);System.out.println(a.getAndIncrement(user));// 22System.out.println(a.get(user));// 23}
}class User {private String name;public volatile int age;public User(String name, int age) {super();this.name = name;this.age = age;}public String getName() {return name;}public void setName(String name) {this.name = name;}public int getAge() {return age;}public void setAge(int age) {this.age = age;}}

输出结果:

22
23

原子操作增强类原理深度解析

  • DoubleAccumulator:一个或多个变量,它们一起保持运行double使用所提供的功能更新值
  • DoubleAdder:一个或多个变量一起保持初始为零double总和
  • LongAccumulator:一个或多个变量,一起保持使用提供的功能更新运行的值long ,提供了自定义的函数操作
  • LongAdder:一个或多个变量一起维持初始为零long总和(重点),只能用来计算加法,且从0开始计算

常用API

image.png

源码、原理分析

  • 架构

image.png

  • 原理(LongAdder为什么这么快)
    • 如果是JDK8,推荐使用LongAdder对象,比AtomicLong性能更好(减少乐观锁的重试次数)
    • LongAdder是Striped64的子类
    • Striped64的基本结构
  • image.png

image.png

    • cell:是java.util.concurrent.atomic下Striped64的一个内部类
    • LongAdder为什么这么快
      • LongAdder的基本思路就是分散热点,将value值分散到一个Cell数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个值进行CAS操作,这样热点就被分散了,冲突的概率就小很多,如果要获取真正的long值,只要将各个槽中的变量值累加返回
      • sum()会将所有的Cell数组中的value和base累加作为返回值,核心的思想就是将之前AtomicLong一个value的更新压力分散到多个value中去,从而降级更新热点
      • 内部有一个base变量,一个Cell[]数组
        • base变量:低并发,直接累加到该变量上
        • Cell[]数组:高并发,累加进各个线程自己的槽Cell[i]中
        • image.png
  • 源码解读深度分析

    • LongAdder在无竞争的情况下,跟AtomicLong一样,对同一个base进行操作,当出现竞争关系时则是采用化整为零分散热点的做法,用空间换时间,用一个数组cells,将一个value值拆分进这个数组cells。多个线程需要同时对value进行操作的时候,可以对线程id进行hash得到hash值,再根据hash值映射到这个数组cells的某个下标,再对该下标所对应的值进行自增操作。当所有线程操作完毕,将数组cells的所有值和base都加起来作为最终结果
    • add(1L)
    • image.png
      • 1 如果Cells表为空,尝试用CAS更新base字段,成功则退出
      • 2 如果Cells表为空,CAS更新base字段失败,出现竞争,uncontended为true,调用longAccumulate(新建数组)
      • 3 如果Cells表非空,但当前线程映射的槽为空,uncontended为true,调用longAccumulate(初始化)
      • 4 如果Cells表非空,且当前线程映射的槽非空,CAS更新Cell的值,成功则返回,否则,uncontended设为false,调用longAccumulate(扩容)
    • longAccumulate

    • image.png

    • sum

    • image.png

      ■ sum()会将所有Cell数组中的value和base累加作为返回值。核心思想就是将之前AtomicLong一个value的更新压力分散到多个value中去,从而降级更新热点。

      ■ sum执行时,并没有限制对base和cells的更新,所以LongAdder不是强一致性的,它是最终一致性的,对cell的读取无法保证是最后一次写入的值,所以在没有并发的场景下,可以获得正确的结果。

    • 使用总结

      • AtomicLong线程安全,可允许一些性能损耗,要求高精度时可使用,保证精度,多个线程对单个热点值value进行了原子操作-----保证精度,性能代码
      • LongAdder当需要在高并发场景下有较好的性能表现,且对值得精确度要求不高时,可以使用,LongAdder时每个线程拥有自己得槽,各个线程一般只对自己槽中得那个值进行CAS操作—保证性能,精度代价
  • 总结

    • AtomicLong
      • 原理:CAS+自旋
      • 场景:低并发下的全局计算,AtomicLong能保证并发情况下计数的准确性,其内部通过CAS来解决并发安全性问题
      • 缺陷:高并发后性能急剧下降----AtomicLong的自旋会成为瓶颈(N个线程CAS操作修改线程的值,每次只有一个成功过,其他N-1失败,失败的不停自旋直至成功,这样大量失败自旋的情况,一下子cpu就打高了)
    • LongAdder
      • 原理:CAS+Base+Cell数组分散-----空间换时间并分散了热点数据
      • 场景:高并发下的全局计算
      • 缺陷:sum求和后还有计算线程修改结果的话,最后结果不够准确

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/299898.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LaTeX引用参考文献 | Texstudio引用参考文献

图片版教程&#xff1a; 文字版教程&#xff1a; ref.bib里面写参考的文献&#xff0c;ref.bib和document.tex要挨着放&#xff0c;同一个目录里面. 解析一下bib文件格式&#xff1a;aboyeji2023effect是引用文献的关键字&#xff0c;需要在正文document.tex里面使用\cite指令…

程序员必须掌握的排序算法:插入排序的原理与实现

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《数据结构&算法》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! &#x1f4cb; 前言 插入排序八大排序之一是一种非常简单直观的排序算法&#xff0c;尽管插入排序在时间复杂度上并不…

web自动化测试的智能革命:AI如何推动软件质量保证的未来

首先这个标题不是我取的&#xff0c;是我喂了关键字让AI给取的&#xff0c;果然非常的标题党&#xff0c;让人印象深刻&#xff0c;另外题图也是AI自动生成的。 先简单回顾一下web自动化测试的一些发展阶段 QTP时代 很多年前QTP横空出世的时候&#xff0c;没有人会怀疑这种工…

HTML5之 夜景放烟花

参考网址 https://blog.csdn.net/Gou_Hailong/article/details/122269931 https://blog.csdn.net/u013343616/article/details/122233674 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transi…

无人叉车驻车定位RFID传感器CNS-RFID-01|1S的CAN总线通信连接方法

无人叉车驻车定位RFID传感器CNS-RFID-01|1S支持CAN总线通信方式&#xff0c;广泛应用于智能仓库&#xff0c;AGV |RGV小车&#xff0c;无人叉车&#xff0c;搬运机器人定位&#xff0c;驻车等领域&#xff0c;本篇幅主要介绍器CNS-RFID-01|1S RFID传感器的CAN总线通信连接方法。…

SQL优化 - 索引成本计算和优化建议

Mysql优化器会对SQL进行优化生成执行计划&#xff0c;后续所有的执行流程都是按照这样的执行计划执行&#xff0c;在此阶段就会决策评估索引的选择&#xff0c;mysql在对于索引选择会有关键性的评估依据&#xff1a;成本 说白了&#xff0c;假如有2个索引&#xff0c;优化器会…

GitHub、Gitee、Gitlab共用一个SSH密钥配置

目录 1. 说明2. 生成ssh2-1. 设置全局邮箱和用户名2-2. 生成全局ssh 3. Github、Gitee配置ssh3-1. Github配置3-2. Gitee配置 1. 说明 由于我的Github、Gitee、Gitlab用的邮箱不同&#xff0c;向不同的平台提交代码时都需要验证密码&#xff0c;非常麻烦所以配置了一个共用的S…

推荐10款免费的AI配音软件,输入文字一键转语言

配音是短视频制作中不可或缺的一环。如果你正在为寻找一款既免费又具备专业水准的配音软件而感到困惑&#xff0c;那么我有一个好消息要告诉你。接下来我将分享几款出色的在线配音软件&#xff0c;它们提供了免费的声音资源&#xff0c;能够满足各种配音需求。无论你是需要男声…

ref组合式api声明状态

一、ref声明响应式状态&#xff08;支持所有类型&#xff09;&#xff0c;因为内部维护一个refImpl对象{value:***}&#xff0c;,如下图&#xff1a; ref声明的数字、字符、布尔、对象、数组类型的值都存在refImpl 对象的value属性里面 所以&#xff0c;如果要改变ref 声明的变…

Java Web Day07-08_Layui

1. Layui概念介绍 layui&#xff08;谐音&#xff1a;类 UI) 是一套开源的 Web UI 解决方案&#xff0c;采用自身经典的模块化规范&#xff0c;并遵循原生 HTML/CSS/JS 的开发方式&#xff0c;极易上手&#xff0c;拿来即用。其风格简约轻盈&#xff0c;而组件优雅丰盈&#x…

SDCMS靶场漏洞挖掘

昨天才打完了khbc靶场&#xff0c;今天就马上投入到sdcms靶场&#xff0c;通过这个靶场&#xff0c;还是有不少的感悟的&#xff0c;下面&#xff0c;我们就以网安小白的身份来审视一下这个靶场&#xff01;&#xff01; ​​​​​​​ ​​​​​​​ ​​​​…

【四】【C语言\动态规划】地下城游戏、按摩师、打家劫舍 II,三道题目深度解析

动态规划 动态规划就像是解决问题的一种策略&#xff0c;它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题&#xff0c;并将每个小问题的解保存起来。这样&#xff0c;当我们需要解决原始问题的时候&#xff0c;我们就可以直接利…