【数据结构和算法】找到最高海拔

其他系列文章导航

Java基础合集
数据结构与算法合集

设计模式合集

多线程合集

分布式合集

ES合集


文章目录

其他系列文章导航

文章目录

前言

一、题目描述

二、题解

2.1 前缀和的解题模板

2.1.1 最长递增子序列长度

2.1.2 寻找数组中第 k 大的元素

2.1.3 最长公共子序列长度

2.1.4 寻找数组中第 k 小的元素

2.2 方法一:前缀和(差分数组)

三、代码

3.2 方法一:前缀和(差分数组)

四、复杂度分析

4.2 方法一:前缀和(差分数组)


前言

这是力扣的 1732 题,难度为简单,解题方案有很多种,本文讲解我认为最奇妙的一种。

这是一道非常经典的前缀和问题,虽然看似简单,但它却能让你深入理解前缀和的特点。


一、题目描述

有一个自行车手打算进行一场公路骑行,这条路线总共由 n + 1 个不同海拔的点组成。自行车手从海拔为 0 的点 0 开始骑行。

给你一个长度为 n 的整数数组 gain ,其中 gain[i] 是点 i 和点 i + 1 的 净海拔高度差0 <= i < n)。请你返回 最高点的海拔 。

示例 1:

输入:gain = [-5,1,5,0,-7]
输出:1
解释:海拔高度依次为 [0,-5,-4,1,1,-6] 。最高海拔为 1 。

示例 2:

输入:gain = [-4,-3,-2,-1,4,3,2]
输出:0
解释:海拔高度依次为 [0,-4,-7,-9,-10,-6,-3,-1] 。最高海拔为 0 。

提示:

  • n == gain.length
  • 1 <= n <= 100
  • -100 <= gain[i] <= 100

二、题解

2.1 前缀和的解题模板

前缀和算法是一种在处理数组或链表问题时常用的技巧,它可以有效地减少重复计算,提高算法的效率。下面是一些常见的使用前缀和算法的题目以及解题思路:

2.1.1 最长递增子序列长度

题目描述:给定一个无序数组,求最长递增子序列的长度。

解题思路:可以使用前缀和和单调栈来解决这个问题。首先,遍历数组,计算出前缀和。然后,使用单调栈记录当前递增子序列的起始位置。遍历数组时,如果当前元素大于前缀和,说明可以扩展当前递增子序列,将当前位置入栈。如果当前元素小于等于前缀和,说明当前递增子序列已经结束,弹出栈顶元素。最后,栈中剩余的元素即为最长递增子序列的起始位置,计算长度即可。

2.1.2 寻找数组中第 k 大的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k大的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。首先,计算出数组的前缀和。然后,使用快速选择算法在数组中找到第k小的元素。具体实现中,每次选择一个枢轴元素,将数组分成两部分,小于枢轴的元素和大于枢轴的元素。如果枢轴左边的元素个数小于k,则在左边的子数组中继续查找;如果枢轴左边的元素个数大于等于k,则在右边的子数组中继续查找。最后,当找到第k小的元素时,返回该元素即可。

2.1.3 最长公共子序列长度

题目描述:给定两个字符串,求最长公共子序列的长度。

解题思路:可以使用动态规划算法来解决这个问题。如果字符串长度分别为m和n,则可以定义一个二维数组dp[m+1][n+1],其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符的最长公共子序列长度。根据动态规划的思想,状态转移方程为dp[i][j] = max(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])。如果s1[i-1]等于s2[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则dp[i][j]取其他两种情况中的较大值。最终结果为dp[m][n]。

2.1.4 寻找数组中第 k 小的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k小的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。具体实现与寻找第k大元素类似,只不过最后返回的是第k小的元素而非第k大的元素。

2.2 方法一:前缀和(差分数组)

解这个问题需要注意以下几点:

  1. 理解题意:首先,要明确题目的要求,理解自行车手的骑行路线和海拔变化的关系。根据题目描述,自行车手从海拔为0的点开始骑行,通过一系列的海拔变化,最终要找到最高点的海拔。
  2. 分析海拔变化:根据给定的gain数组,可以分析出自行车手的海拔变化。gain[i]表示点i和点i+1之间的净海拔高度差。通过累加这些高度差,可以计算出经过每个点后的总海拔变化。
  3. 确定最高点的海拔:在计算出总的海拔变化后,需要找到最高点的海拔。这可以通过比较累加海拔和初始海拔的大小来实现。最高点的海拔即为累加海拔和初始海拔中的较大值。
  4. 注意数组边界条件:在处理gain数组时,需要注意数组的边界条件。例如,gain[0]表示起点和终点之间的海拔高度差,而gain[n-1]表示倒数第二个点和终点之间的海拔高度差。
  5. 代码实现:最后,根据上述分析,可以使用Python等编程语言实现相应的算法。在实现过程中,需要注意代码的简洁性和可读性,同时也要注意处理可能的异常情况。

思路与算法:

我们假设每个点的海拔为 hi ,由于 gain[i] 表示第 i 个点和第 i+1 个点的海拔差,因此

gain[i] = h(i+1) − hi,那么: 

可以发现,每个点的海拔都可以通过前缀和的方式计算出来。因此,我们只需要遍历一遍数组,求出前缀和的最大值,即为最高点的海拔。

实际上题目中的 gain 数组是一个差分数组,对差分数组求前缀和即可得到原海拔数组。然后求出原海拔数组的最大值即可。


三、代码

3.2 方法一:前缀和(差分数组)

Java版本:

class Solution {public int largestAltitude(int[] gain) {int high = 0, max = 0;for (int h : gain) {high += h;max = Math.max(max, high);}return max;}
}

C++版本:

class Solution {
public:int largestAltitude(std::vector<int>& gain) {int high = 0, max = 0;for (int h : gain) {high += h;max = std::max(max, high);}return max;}
};

Python版本:

class Solution:def largestAltitude(self, gain: List[int]) -> int:high = 0max_altitude = 0for h in gain:high += hmax_altitude = max(max_altitude, high)return max_altitude

Go版本:

func largestAltitude(gain []int) int {high, max := 0, 0for _, h := range gain {high += hif high > max {max = high}}return max
}func main() {gain := []int{-5, 1, 5, 0, -7}result := largestAltitude(gain)fmt.Println(result)
}

四、复杂度分析

4.2 方法一:前缀和(差分数组)

  • 时间复杂度: O(n),其中 n 为数组 gain 的长度。
  • 空间复杂度: O(1)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/300897.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2015年第四届数学建模国际赛小美赛C题科学能解决恐怖主义吗解题全过程文档及程序

2015年第四届数学建模国际赛小美赛 C题 科学能解决恐怖主义吗 原题再现&#xff1a; 为什么人们转向恐怖主义&#xff0c;特别是自杀性恐怖主义&#xff1f;主要原因是什么&#xff1f;这通常是大问题和小问题的结合&#xff0c;或者是一些人所说的“推拉”因素。更大的问题包…

Azure Machine Learning - Azure OpenAI GPT 3.5 Turbo 微调教程

本教程将引导你在Azure平台完成对 gpt-35-turbo-0613 模型的微调。 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验&#xff0c;同济本复旦硕&#xff0c;复旦机器人智能实验室成员&#xff0c;阿里云认证的资深架构师&…

【力扣题解】P226-翻转二叉树-Java题解

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【力扣题解】 文章目录 【力扣题解】P226-翻转二叉树-Java题解&#x1f30f;题目描述&#x1f4a1;题解&#x1f30f;总结…

Vue-Pinina基本教程

前言 官网地址&#xff1a;Pinia | The intuitive store for Vue.js (vuejs.org) 看以下内容&#xff0c;需要有vuex的基础&#xff0c;下面很多概念会直接省略&#xff0c;比如state、actions、getters用处含义等 1、什么是Pinina Pinia 是 Vue 的存储库&#xff0c;它允许您跨…

ZooKeeper Client API 安装及使用指北

下载 wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.4-beta/zookeeper-3.5.4-beta.tar.gz解压 tar -zxf zookeeper-3.5.4-beta.tar.gz安装 cd zookeeper-3.5.4-beta/src/c/ ./configure make sudo make install到 make 这一步大概率会出现报错&#xff1a;…

云计算1.0、云原生2.0、AI云计算3.0,是解除IT互联网人才35岁的危机之道?

互联网员工的“35岁”危机&#xff0c;算不上一个新鲜的话题。年轻人不断涌入大厂的同时&#xff0c;老员工的受挫与焦虑也在同步发生。 “员工35岁被裁”“高龄员工劝退”&#xff0c;论坛、新闻里一些案例&#xff0c;更是放大了互联网人的35岁危机感。处在上有老、下有小的…

如何进行块存储管理

目录 块存储概念 块存储&#xff08;云盘&#xff09;扩容 方式一&#xff1a;直接扩容现有云盘 方式二&#xff1a;创建一块新数据盘 方式三&#xff1a;在更换操作系统时&#xff0c;同时更换系统盘 块存储&#xff08;云盘&#xff09;变配 云盘变配操作步骤 块存储概…

创建maven项目后需要注意的事项

检查maven 检查Java Compiler 检查Project Structure

【Web】Ctfshow Thinkphp3.2.3代码审计(3)

web574 这题与web573的区别在于进find()前先进了where()处理 跟进where() 我们假设传个1&#xff0c;和id拼接 发现会进到is_string的判断里&#xff0c;让$options[where]array("_string">"1") 之后传入到find()&#xff0c;和web573一样也是以数组…

【MySQL】数据库规范化的三大法则 — 一探范式设计原则

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; 数 据 库 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 1. 第一范式&#xff08;1NF&#xff09;&#xff1a; 2. 第二范式&#xff08;2NF&#xff09;&#xff1a; 3. 第三范式…

静态HTTP的未来:探讨新技术趋势

在Web的世界里&#xff0c;静态HTTP一直是个不可或缺的角色。它就像一个尽职尽责的邮递员&#xff0c;确保数据安全、准确地送达目的地。但随着时代的发展&#xff0c;邮递员也需要跟上潮流&#xff0c;不断学习和进步。那么&#xff0c;静态HTTP的未来会是怎样的呢&#xff1f…

RFID技术在汽车制造:提高生产效率、优化物流管理和增强安全性

RFID技术在汽车制造:提高生产效率、优化物流管理和增强安全性 随着科技的进步&#xff0c;物联网技术已经深入到各个领域&#xff0c;尤其在制造业中&#xff0c;RFID技术以其独特的优势&#xff0c;如高精度追踪、实时数据收集和自动化操作&#xff0c;正在改变传统的生产方式…