[Redis实战]优惠券秒杀

三、优惠券秒杀

3.1 全局唯一ID

每个店铺都可以发布优惠券:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当用户抢购时,就会生成订单并保存到tb_voucher_order这种表中,而订单表如果使用数据库自增ID就存在一些问题:

  • id的规律性太明显
  • 受单表数据量的限制

场景分析一:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。

场景分析二:随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表之后,他们从逻辑上讲是同一张表,所以他们的id是不能一样的,我们需要保证id的唯一性。

全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

为了增强ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ID的组成部分:

  • 符号位:1bit,永远为0
  • 时间戳:31bit,以秒为单位,可以使用69年
  • 序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID

3.2 Redis实现全局唯一ID

@Component
public class RedisIdWorker {/*** 开始时间戳*/private static final long BEGIN_TIMESTAMP = 1640995200L;/*** 序列号的位数*/private static final int COUNT_BITS = 32;private StringRedisTemplate stringRedisTemplate;public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public long nextId(String keyPrefix) {// 1.生成时间戳LocalDateTime now = LocalDateTime.now();long nowSecond = now.toEpochSecond(ZoneOffset.UTC);long timestamp = nowSecond - BEGIN_TIMESTAMP;// 2.生成序列号// 2.1.获取当前日期,精确到天String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));// 2.2.自增长long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);// 3.拼接并返回return timestamp << COUNT_BITS | count;}
}

测试类:

countdownlatch

CountDownLatch 中有两个最重要的方法

1、countDown

2、await

await 方法 是阻塞方法,我们担心分线程没有执行完时,main线程就先执行,所以使用await可以让main线程阻塞,那么什么时候main线程不再阻塞呢?当CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,那么什么时候CountDownLatch 维护的变量变为0 呢,我们只需要调用一次countDown ,内部变量就减少1,我们让分线程和变量绑定, 执行完一个分线程就减少一个变量,当分线程全部走完,CountDownLatch 维护的变量就是0,此时await就不再阻塞,统计出来的时间也就是所有分线程执行完后的时间。

@Autowired
private RedisIDWorker redisIDWorker;//创建500个线程
private ExecutorService es = Executors.newFixedThreadPool(500);@Test
void testIdWorker() throws InterruptedException {//总数是300CountDownLatch latch = new CountDownLatch(300);Runnable task = () -> {//每个线程生成100个idfor (int i = 0; i < 100; i++) {long id = redisIDWorker.nextId("order");System.out.println("id = " + id);}//latch-1latch.countDown();};long begin = System.currentTimeMillis();//将每个任务提交300次for (int i = 0; i < 300; i++) {es.submit(task);}//等待计数器归零,然后再向下执行latch.await();long end = System.currentTimeMillis();System.out.println("time=" + (end - begin));
}

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.3 添加优惠券

每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

tb_voucher:优惠券的基本信息,优惠金额、使用规则等
tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息

平价卷由于优惠力度并不是很大,所以是可以任意领取

而代金券由于优惠力度大,所以像第二种卷,就得限制数量,从表结构上也能看出,特价卷除了具有优惠卷的基本信息以外,还具有库存,抢购时间,结束时间等等字段

**新增普通卷代码: **VoucherController

@PostMapping
public Result addVoucher(@RequestBody Voucher voucher) {voucherService.save(voucher);return Result.ok(voucher.getId());
}

新增秒杀卷代码:

VoucherController

@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {voucherService.addSeckillVoucher(voucher);return Result.ok(voucher.getId());
}

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {// 保存优惠券save(voucher);// 保存秒杀信息SeckillVoucher seckillVoucher = new SeckillVoucher();seckillVoucher.setVoucherId(voucher.getId());seckillVoucher.setStock(voucher.getStock());seckillVoucher.setBeginTime(voucher.getBeginTime());seckillVoucher.setEndTime(voucher.getEndTime());seckillVoucherService.save(seckillVoucher);// 保存秒杀库存到Redis中stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

3.4 实现秒杀下单

核心思路:当我们点击抢购时,会触发右侧的请求,我们只需要编写对应的controller即可。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

秒杀下单应该思考的内容:

下单时需要判断两点:

  1. 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
  2. 库存是否充足,不足则无法下单

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

VoucherOrderController

@Autowired
private IVoucherOrderService voucherOrderService;@PostMapping("seckill/{id}")
public Result seckillVoucher(@PathVariable("id") Long voucherId) {return voucherOrderService.seckillVoucher(voucherId);
}

VoucherOrderServiceImpl

@Autowired
private ISeckillVoucherService seckillVoucherService;@Autowired
private RedisIDWorker redisIDWorker;@Transactional
public Result seckillVoucher(Long voucherId) {//1.查询优惠券信息SeckillVoucher voucher = seckillVoucherService.getById(voucherId);//2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {return Result.fail("秒杀尚未开始!");}//3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {return Result.fail("秒杀已经结束!");}//4.判断库存是否充足if (voucher.getStock() < 1) {return Result.fail("库存不足!");}//5.扣减库存boolean success = seckillVoucherService.update().setSql("stock=stock-1").eq("voucher_id", voucherId).update();if (!success) {return Result.fail("库存不足!");}//6.创建订单Long orderId = redisIDWorker.nextId("order");VoucherOrder order = VoucherOrder.builder().id(orderId).voucherId(voucherId).userId(UserHolder.getUser().getId()).build();save(order);//7.返回订单idreturn Result.ok(orderId);
}

3.5 库存超卖问题

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:见下图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

悲观锁

悲观锁可以实现对于数据的串行化执行,比如synchronized、lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁、非公平锁、可重入锁等等。

乐观锁

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

修改代码方案:使用CAS法

//update tb_seckill_voucher set stock=stock-1 where voucher_id=? and stock>0;
boolean success = seckillVoucherService.update().setSql("stock= stock -1").eq("voucher_id", voucherId).update().gt("stock",0).update(); 

3.6 优惠券秒杀-一人一单

需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

初步代码:增加一人一单逻辑

	// 5.一人一单逻辑// 5.1.用户idLong userId = UserHolder.getUser().getId();int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();// 5.2.判断是否存在if (count > 0) {// 用户已经购买过了return Result.fail("用户已经购买过一次!");}

存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,保证不了一个用户只能下一单,所以我们还需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁来操作。

注意:加锁的初始方案是封装一个createVoucherOrder方法,同时为了保证线程安全,在方法上添加了一把synchronized锁,但是这样的锁,锁的粒度太粗了,在使用锁的过程中,控制锁粒度是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度。

intern()这个方法是从常量池中拿到数据,如果我们直接使用userId.toString()它拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁是同一把,所以我们使用intern()方法。

但是代码还是存在问题,问题的原因在于当前方法被spring的事务控制,如果你在方法内部加锁,可能导致当前方法事务还没有提交,但是锁已经释放也会导致问题,所以我们选择将当前方法整体包裹起来,确保事务不会出现问题。如下:

在seckillVoucher方法中,添加以下逻辑,这样就能保证事务的特性,同时也控制了锁的粒度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还要利用代理来生效,所以这个地方,我们需要获得原始的事务对象,来操作事务

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

完整代码

@Autowired
private ISeckillVoucherService seckillVoucherService;@Autowired
private RedisIDWorker redisIDWorker;public Result seckillVoucher(Long voucherId) {//1.查询优惠券信息SeckillVoucher voucher = seckillVoucherService.getById(voucherId);//2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {return Result.fail("秒杀尚未开始!");}//3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {return Result.fail("秒杀已经结束!");}//4.判断库存是否充足if (voucher.getStock() < 1) {return Result.fail("库存不足!");}Long userId = UserHolder.getUser().getId();synchronized (userId.toString().intern()) {//获取代理对象(事务)IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);}
}@Transactional
public Result createVoucherOrder(Long voucherId) {//5.一人一单Long userId = UserHolder.getUser().getId();//5.1查询订单Integer count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();//5.2判断是否存在if (count > 0) {//用户已经购买过了return Result.fail("用户已经购买过一次!");}//6.扣减库存//update tb_seckill_voucher set stock=stock-1 where voucher_id=? and stock>0;boolean success = seckillVoucherService.update().setSql("stock=stock-1").eq("voucher_id", voucherId).gt("stock", 0).update();if (!success) {return Result.fail("库存不足!");}//7.创建订单Long orderId = redisIDWorker.nextId("order");VoucherOrder order = VoucherOrder.builder().id(orderId).voucherId(voucherId).userId(userId).build();save(order);//8.返回订单idreturn Result.ok(orderId);
}

3.7 集群环境下的并发问题

通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。

  1. 我们将服务启动两份。端口分别为8081和8083:

    外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  2. 然后将nginx的conf目录下的nginx.conf文件,配置反向代理和负载均衡:

    外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有关锁失效原因分析

由于我们现在部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果我们现在是服务器B的tomcat内部又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是集群环境,syn锁失效的原因,在这种情况下我们就需要使用分布式锁来解决这个问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/305113.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络安全 | 扫描器】御剑安装及使用教程详析

御剑是一款传统的Web网络安全综合检测程序&#xff0c;支持对PHP、JSP、ASPX等文件进行扫描&#xff0c;具备全扫描、网络安全扫描和主机安全扫描能力&#xff0c;方便发现网站漏洞。 文章目录 下载使用教程 本文对御剑的安装及使用教程进行详析 下载 下载地址读者可自行上网…

无人职守自动安装linux操作系统

无人职守自动安装linux操作系统 1. 大规模部署案例2. PXE 技术3. Kickstart 技术4. 配置安装服务器4.1 DHCP服务4.2 TFTP 服务4.3 NFS服务 5. 示例5.1 搭建server1. 启动dhcp并设为开机自启2. 设置并启动tftp3. 将客户端所需启动文件复制到TFTP服务器4. 创建Kickstart自动应答文…

美国化妆品FDA认证被强制要求,出口企业该这么办!!!

化妆品FDA认证是进入美国市场的重要准入条件&#xff0c;具备该认证有助于提升产品的市场竞争力和信誉&#xff1b; 目前FDA注册系统已全面开放&#xff0c;从原来的自愿性认证变更为现在的强制性认证&#xff0c;化妆品企业合规日期为2023年12月29日&#xff0c;但是强制处罚…

C++day2作业

把课上strcut的练习&#xff0c;尝试着改成class #include <iostream>using namespace std; class Stu { private:int age;string sex;int hign; public:int soce;void get_information();void set_information(); }; void Stu::set_information() {static Stu s1;cout …

JAVA——JDBC学习

视频连接&#xff1a;https://www.bilibili.com/video/BV1sK411B71e/?spm_id_from333.337.search-card.all.click&vd_source619f8ed6df662d99db4b3673d1d3ddcb 《视频讲解很详细&#xff01;&#xff01;推荐》 JDBC&#xff08;Java DataBase Connectivity Java数据库连…

Flink1.17实战教程(第四篇:处理函数)

系列文章目录 Flink1.17实战教程&#xff08;第一篇&#xff1a;概念、部署、架构&#xff09; Flink1.17实战教程&#xff08;第二篇&#xff1a;DataStream API&#xff09; Flink1.17实战教程&#xff08;第三篇&#xff1a;时间和窗口&#xff09; Flink1.17实战教程&…

C语言之字符串处理

目录 字符串长度 显示字符串 数字字符的出现次数 大小写字符转换 字符串数组的参数传递 非字符串的字符数组 目前我们所学习到的是围绕字符串的处理&#xff0c;仅仅是生成字符串、读取并显示字符串&#xff0c;下面我学习更加灵活处理字符串的方式。 字符串长度 我们来看…

kubeSphere集群部署ElasticSearch

kubeSphere集群部署ElasticSearch 根据docker启动文件来配置修改max_map_count添加配置文件创建工作负载测试 根据docker启动文件来配置 docker run -d \--name es \-e "ES_JAVA_OPTS-Xms512m -Xmx512m" \-e "discovery.typesingle-node" \-v es-data:/us…

设计模式--访问者模式

实验 25&#xff1a;访问者模式 本次实验属于模仿型实验&#xff0c;通过本次实验学生将掌握以下内容&#xff1a; 1、理解访问者模式的动机&#xff0c;掌握该模式的结构&#xff1b; 2、能够利用访问者模式法解决实际问题。 [实验任务]&#xff1a;打包员 在我们课堂上…

【新版Hi3536AV100性能果真强悍】

Hi3536AV100是针对多路高清/超高清&#xff08;1080p/4M/5M/4K&#xff09;智能NVR产品应用开发的新一代专业高端SoC芯片。 Hi3536AV100集成了ARM Cortex-A55八核处理器和性能强大的神经网络处理器&#xff0c;支持多种智能算法应用。 Hi3536AV100支持32路1080p多协议解码及4路…

车队试验的远程实时显示方案

风丘科技推出的数据远程实时显示方案更好地满足了客户对于试验车队远程实时监控的需求&#xff0c;并真正实现了试验车队的远程管理。随着新的数据记录仪软件IPEmotion RT和相应的跨平台显示解决方案的引入&#xff0c;让我们的客户端不仅可在线访问记录器系统状态&#xff0c;…

【Vulnhub 靶场】【Hms?: 1】【简单】【20210728】

1、环境介绍 靶场介绍&#xff1a;https://www.vulnhub.com/entry/hms-1,728/ 靶场下载&#xff1a;https://download.vulnhub.com/hms/niveK.ova 靶场难度&#xff1a;简单 发布日期&#xff1a;2021年07月28日 文件大小&#xff1a;2.9 GB 靶场作者&#xff1a;niveK 靶场系…