【论文阅读】Realtime multi-person 2d pose estimation using part affinity fields

OpenPose:使用PAF的实时多人2D姿势估计。

code:GitHub - ZheC/Realtime_Multi-Person_Pose_Estimation: Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

paper:[1611.08050] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields (arxiv.org)

0 摘要

一种检测图像中多人的2D姿态的方法。 使用非参数表示(关节亲和力场PAF)学习将身体部位与图像中的人体相关联。对全局上下文进行编码,允许自下而上的解析步骤,在保持高精度的同时实现实时性。该架构旨在共同学习关节位置和它们通过同一顺序预测过程的两个分支进行关联。 在COCO 2016关键点挑战中排名第一。

1 介绍

人体2D姿势估计的问题,主要集中在寻找个体的身体部位上。 推断图像中的多个人的姿势,困难在于:首先,每个图像可能包含未知数量的人;其次,人与人互动导致遮挡,空间干扰,部位的关联困难。 第三,运行时复杂度随人数而增加,给实时性带来了挑战。

常用的方法是:自上而下的单人姿势估计,但缺点很多。自下而上的方法:联合标记了部位检测的候选对象,并将其与单个人体相关联。但是,在完全连接的图上求解整数线性规划问题是一个NP难题,平均处理时间约为几小时。

本文提出了一种有效的方法,进行多人姿势估计:通过部分亲和力字段(PAF),展示了关联分数的自下而上的表示形式,该部分是一组2D矢量场,可对肢体在图像域上的位置和方向进行编码。 同时推断出检测和关联的这些自下而上的表示方式,可以很好地编码全局上下文,从而可以实现贪心解析高质量的结果,而计算成本少。

 图1 顶部: 多人姿势估计。 属于同一个人的身体部位被链接。 左下:部位亲和力场(PAF)对应于连接右肘和右肢的肢体腕。 颜色编码方向。 右下:放大预测PAF的视图。 在场中的每个像素处,一个2D向量编码肢体的位置和方向。

 2 方法

图2 总体流程。将整个图像作为两分支CNN的输入,以共同预测(b)中所示的身体部位检测,以及(c)中所示的部位关联的部位亲和力场(PAF)。 解析步骤执行一组二分匹配以关联身体部位候选者(d)。 最终组装成图像中所有人的全身姿势(e)。

将大小为w×h的彩色图像作为输入(图2a)。并为图像中的每个人生成解剖学关键点的二维位置(图2e)。首先,前馈网络同时预测身体部位位置的一组2D置信度图S(图2b)和部位亲和力的一组2D矢量场L,它们编码各个部位之间的关联度(图2c)。集合有J个置信图,每个关键点部位一个,。集合 有C个向量场,每个肢体一个, 。 Lc中的每个图像位置都编码一个2D向量(如图1所示)。最后,通过贪心推断来解析置信度图和亲和力场(图2d),以输出图像中所有人的2D关键点。

2.1 同时检测和关联

图3 两个分支的多级CNN。第一个分支中的每个stage预测置信度图S,第二个分支中的每个stage预测PAF。在每个stage之后,S和L以及图片的feature拼接在一起传入到下一个stage中。

同时预测检测置信度图和PAF。网络分为两个分支:顶部分支预测置信度图,底部分支预测PAF。首先通过卷积网络分析图像(由VGG-19的前10层初始化并微调),生成一组输入到每个分支的第一阶段的特征图F。在第一阶段,网络产生一组检测置信度图和一组PAF  ,其中 ρ1 和 φ1 是在第1阶段进行推理的CNN。在每个后续阶段中,前一阶段中两个分支的预测以及原始图像特征F被拼接(concat)起来产生精确的预测。

  ρt 和 φt  是在第t阶段进行推理的CNN。

 图4 右手腕(第一行)和PAF的置信度图跨阶段的右前臂(第二行)。 尽管在早期阶段左右身体部位和四肢之间存在混淆,但如在突出显示的区域中所示,通过后期的全局推断,估算值将越来越完善。

图4显示了跨阶段的置信度图和PAF的细化。 为了指导网络迭代地预测第一分支中的身体部位和第二分支中的PAF的置信度图,在每个阶段的末尾应用两个损失函数,分别在每个分支处应用一个损失函数。 在估计的预测与GT map和PAF之间使用L2损失。 对损失函数进行空间加权,以解决一个实际问题,即某些数据集不能完全标记所有人。 具体而言,在阶段t的两个分支处的损失函数为:

是GT置信度图,是GT PAF,W是一个二进制掩码,当在图像位置p缺少注释时,W(p)= 0。Mask是用来避免惩罚训练期间的真实积极预测。每个阶段的中级监督都通过定期补充梯度来解决了消失的梯度问题。整体目标函数是: 

2.2 用于部位检测的置信度图

评估方程式(5)中的 fs 。在训练过程中,从带注释的2D关键点中生成GT置信度图。每个置信度图是出现在每个像素上位置的特定身体部位的2D表示。如果有多个人出现,对于每个人 k,都有对应于每个可见部分 j 的峰。

首先为人体目标k生成单独的置信度图 。令  为图片中人物k的第j个部位的GT位置。 中位置 的价值定义为:

σ控制峰的扩展。网络要预测的GT置信度图是通过max运算符汇总的各个置信度图,

用置信度图的最大值代替平均值,以使峰值接近的精度仍然保持不同。在测试时,我们预测置信度图(如图4的第一行所示),并通过执行非最大抑制来获得候选的身体部位。 

图5.部位关联策略。(a)身体部位检测两个身体部位类型的候选者(红色和蓝色圆点)候选连接(灰线)。(b)使用中点(黄点)表示的连接结果:正确的连接(黑线)和不正确的连接(绿线)也能满足入射约束。(c)使用PAF的结果(黄色箭头)。 通过编码位置和方向的支持PAF消除了假肢。 

 

2.3 用于部位关联的PAF

给定一组检测到的身体部位(图5a中红色和蓝色),如何组装它们以形成未知人数的全身姿势?需要每对身体部位检测的关联的置信度测量,即它们属于同一部位人。衡量关联的一种可能方法是检测肢体上每对部位之间的附加中点,并检查其在候选对象部位检测的发生率,如图5b所示。但是当人们聚集,这些中点可能支持虚假关联(图5b中绿线)。原因是表示形式有两个限制:(1)仅对位置进行编码,而不是每个肢体的方向;(2)将肢体的支撑区域减少到单个点。

为了解决这些限制,我们提出了部位亲和力场,它同时保留肢体区域的位置和方向信息 (如图5c)。部位相似性是每个肢体的2D矢量场,也如图1d所示:对于属于特定肢体的区域中的每个像素,一个2D矢量编码从肢体一个部位指向另一部位的方向。每种类型的肢体都有一个对应的亲和力场,将其两个相关的身体部位连接在一起。如下图一个单独肢体。

人物k的肢体c的部位 j1 和 j2 的真实位置表示为  。如果一个点p在肢体上, 是一个由 j1 指向 j2的联合向量。其他的所有点,值是0。

PAF简单来说就是描述PCM热力点之间的亲和力,使用2D向量建模骨骼。

按照前文所述Part confidence map和PAF结合,按照原理说可以很好的模拟二维人体的各种效果,按照亲和力高的pcm点,属于同一个人,按理说就能够实现目标效果了,但是实际上并非如此。看到这篇文章中的大佬这样解释:DL-Practise:[多图/秒懂]白话OpenPose,最受欢迎的姿态估计网络

大体表述意思是是很多时候亲和力接近,无法完全根据此配对成功。单单依靠亲和力最大值匹配会出现不想要的结果。

转化为二分图匹配问题,解决方法是使用匈牙利算法。

通过采样和对u的等距值求和来估算积分。

 图6.图的匹配。(a)带有部位检测的原始图像; (b)K部分图; (c)树结构; (d)一组二部图

 

 

 

参考:深度学习论文翻译(12)——OpenPose - 知乎 (zhihu.com)

论文阅读笔记(1)OpenPose:Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields - 知乎 (zhihu.com) [多图/秒懂]白话OpenPose,最受欢迎的姿态估计网络 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/305391.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端工程化实战 - 日程管理

我是南城余!阿里云开发者平台专家博士证书获得者! 欢迎关注我的博客!一同成长! 一名从事运维开发的worker,记录分享学习。 专注于AI,运维开发,windows Linux 系统领域的分享! 本…

信息安全概论快速复习(期末急救)

文章目录 1、DES中的S-盒输入输出问题 (不需要记住S-盒)2、Kerberos认证系统3、简答题(三题每题8分):课后习题第一章、第三章、第四章第一章:重点关注安全模型内容,有几种,有几个分级…

CSP CCF 201412-2 Z字形扫描 C++满分题解

解题思路&#xff1a; 1.将矩阵分成左上和右下两个部分来看 2.每一个部分都是按着斜线输出 3.同一根斜线上坐标的xy相同&#xff0c;不同线上坐标的xy为公差为1的等差数列 4.左边线上坐标的xy依次变大&#xff0c;右边依次变小 #include<iostream> using namespace s…

嵌入式Linux:提升VMware虚拟机运行速度的方法

使用虚拟机运行Linux操作系统通常会比在物理机上直接安装系统的运行效率更低&#xff0c;本篇博文将介绍如何优化虚拟机的设置&#xff0c;进而提升虚拟机性能体验。 第1步&#xff1a;选择VMware菜单&#xff1a;编辑–>首选项–>更新&#xff0c;将”启动时检查产品更新…

初步认识API安全

一、认识API 1. 什么是API API(应用程序接口)&#xff1a;是一种软件中介&#xff0c;它允许两个不相关的应用程序相互通信。它就像一座桥梁&#xff0c;从一个程序接收请求或消息&#xff0c;然后将其传递给另一个程序&#xff0c;翻译消息并根据 API 的程序设计执行协议。A…

计算机中找不到vcruntime140.dll无法启动此程序怎么解决?

无法继续执行代码&#xff0c;因为找不到vcruntime140.dll”。那么&#xff0c;vcruntime140.dll是什么文件&#xff1f;它的作用是什么&#xff1f;当它丢失时会对电脑产生什么影响&#xff1f;本文将为您详细介绍vcruntime140.dll文件的相关知识&#xff0c;并提供五种解决vc…

Linux内核模块基础知识

什么是内核模块&#xff1f; 内核是操作系统的中枢神经系统&#xff0c;控制着它所做的一切&#xff0c;包括管理硬件组件之间的交互和启动必要的 服务。内核在你看到的用户应用程序和运行所有东西的硬件&#xff08;如 CPU&#xff0c;内存和硬盘驱动器&#xff09;之间运行。…

活动回顾 (下) | 机器学习系统趋势研判,大咖金句汇总

作者&#xff1a;三羊、李宝珠、李玮栋、Yudi、xixi 编辑&#xff1a;李宝珠 在大模型时代的浪潮中&#xff0c;机器学习系统正经历着前所未有的变革。模型规模的急剧膨胀&#xff0c;让我们见证了 AI 能力的巨大提升&#xff0c;然而这种提升不仅为各个领域带来了新的机遇&…

Nginx直播服务器搭建及推拉流测试

文章目录 前言一、搭建 Nginx 直播服务器1、安装 Nginx 依赖2、下载并解压源码①、下载并解压 nginx-http-flv-module 直播模块源码②、下载并解压 Nginx 源码 3、编译安装4、配置 rtmp 服务①、添加 rtmp 服务②、验证配置 二、推流、拉流测试1、ffmepg 推流2、VLC 拉流 前言 …

C#学习笔记 - C#基础知识 - C#从入门到放弃 - C# Windows窗体技术及基础控件(二)

C# 入门基础知识 - C# Windows窗体技术及基础控件 第12节 Windows窗体技术及基础控件12.8 Label 控件12.9 Button 控件12.10 TextBox控件12.11 RichTextBox 控件12.12 Timer控件12.13 CheckBox 控件12.14 RadioButton 控件12.15 ComboBox 控件、ListBox 控件和CheckedListBox 控…

Python 小程序之动态二位数组

动态二位数组 文章目录 动态二位数组前言一、基本内容二、代码编写三、效果展示 前言 没想出啥好点子&#xff0c;这次就给大家写个小程序&#xff0c;动态二维数组吧。 一、基本内容 程序画一个二维的方格&#xff0c;然后里面填上1-10的随机数&#xff0c;每隔一秒更新新一…

Linux学习之制作静态库和动态库

写在前面&#xff1a; 我的Linux的学习之路非常坎坷。第一次学习Linux是在大一下的开学没多久&#xff0c;结果因为不会安装VMware就无疾而终了&#xff0c;可以说是没开始就失败了。第二次学习Linux是在大一下快放暑假&#xff08;那个时候刚刚过完考试周&#xff09;&#xf…