基于CNN和双向gru的心跳分类系统

CNN and Bidirectional GRU-Based Heartbeat Sound Classification Architecture for Elderly People是发布在2023 MDPI Mathematics上的论文,提出了基于卷积神经网络和双向门控循环单元(CNN + BiGRU)注意力的心跳声分类,论文不仅显示了模型还构建了完整的系统。

以前的研究

论文总结了以前的研究

数据集和预处理

应用层显示了应用区域,包括医院、政府办公室、救护车、养老院和体育馆。

数据层,处理实时数据采集,如数字或模拟听诊器,机电薄膜(EMFi)传感器,智能手机。

智能层是包含深度学习模型的层。

CirCor数据集

使用CirCor数据集,总共从942名患者中获得3007个录音,包含499个杂音和2508个正常录音。为了解决这个类不平衡问题,论文进行了欠采样。对于欠采样,杂音类使用489个录音,正常类使用489个随机选择的录音。然后将该数据集按70:30的比例分为训练数据和测试数据。

数据增强

时间拉伸:音高移动和音频移动使得总的训练数据变成了原来684个片段大小的3倍。

调高音高:在不改变节奏的情况下,调高或调低音高。半音在-4到+4的范围内随机选择。应用此转换的概率设为0.5。

音频移位:用于向前或向后移动音频样本,有或没有任何翻转。

预处理

数据预处理包括对给定音频信号进行滤波、归一化和下采样。

对给定的音频数据集进行滤波,可以去除录制过程中由于各种环境条件而产生的噪声。

归一化是通过归一化+1到-1范围内的每一类心跳声音来改进训练过程。

信号的下采样率为22050,频率范围为30至1200 Hz。

CNN + BiGRU

作者试图直接在原始时间序列数据上进行训练,但是这导致梯度消失问题和非常长的训练时间。另一种选择是使用色谱图[56],这也是一种与MFCC类似的特征提取方法,但会导致训练不稳定。所以作者最终决定使用MFCC。

CNN + BiGRU模型

由CNN + BiGRU组成的深度学习模型,并使用注意力模型对音频样本进行推理。

在通过GRU单元对时间序列数据进行处理之前,对二维卷积层进行批处理归一化和概率为0.3的Dropout,防止过拟合和泄漏

CNN层期望提取关键的MFCC系数,并以时间序列数据的形式提供给BiGRU层。

BiGRU学习重要的特征,并通过Dropout(防止过拟合)将它们传递给另一个BiGRU层,以提供从mfc中提取的最终特征给前馈神经网络(FFNN)进行预测。FFNN的第一层使用tanh激活,而第二层使用sigmoid激活,因为它是一个二元分类问题。

结果

方法性能对比

采用注意模型的CNN+BiGRU整体验证精度优于其他模型。

与其他模型相比,所提出的体系结构具有更少的训练计算时间复杂度。

消融研究

Adam优化器产生最佳结果。

用MFCC训练非常稳定,收敛速度很快。

数据增强在很大程度上提高了验证的准确性,并有助于对抗过拟合。

论文地址:https://avoid.overfit.cn/post/91ab2a0758e24fe98158f47cabff2468

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/307295.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

财务咨询公司为何要搭建自己的线上课程平台,而非入驻其他公域流量平台

明理信息科技线上课程平台 财务咨询公司为何要搭建自己的线上课程平台,而非入驻其他公域流量平台 随着数字化时代的到来,线上教育和学习已经成为越来越多人的选择。对于财务咨询公司来说,搭建自己的线上课程平台不仅可以更好地满足客户需求…

git 常用基本命令, reset 回退撤销commit,解决gitignore无效,忽略记录或未记录远程仓库的文件,删除远程仓库文件

git 基本命令 reset 撤销commit https://blog.csdn.net/a704397849/article/details/135220091 idea 中 rest 撤销commit过程如下: Git -> Rest Head… 在To Commit中的HEAD后面加上^,点击Reset即可撤回最近一次的尚未push的commit Reset Type 有三…

盘点 | 飞凌嵌入式这5款100%全国产核心板值得推荐

近期,飞凌嵌入式有5款核心板产品通过了中国赛宝实验室的权威认证,实现了100%的电子元器件国产化率,本篇文章小编就带大家盘点一下这5款产品。 一、FET3568-C系列核心板 FET3568-C和FET3568J-C核心板基于Rockchip RK3568系列处理器开发设计&am…

C++初阶(十七)模板进阶

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、非类型模板参数二、模板的特化1、概念2、函数模板特化3、类模板特化1、全特化2、偏特化 三…

Hadoop之Yarn 详细教程

1、yarn 的基本介绍和产生背景 YARN 是 Hadoop2 引入的通用的资源管理和任务调度的平台,可以在 YARN 上运行 MapReduce、Tez、Spark 等多种计算框架,只要计算框架实现了 YARN 所定义的 接口,都可以运行在这套通用的 Hadoop 资源管理和任务调…

yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程)

yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)_yolov8训练自己的数据集-CSDN博客在前几天,我们使用yolov8进行了部署,并在目标检测方向上进行自己数据集的训练与测试,今天我们训练下yolov8的图像分类…

macos Jetbrains IDEA用户自定义vm配置信息存储路径, IDEA点击无反应 无法打开问题解决

Jetbrains Clion, IDEA 用户在应用里面修改了自定义的VM配置后的存储路径为 ~/Library/Application Support/JetBrains/xxx2023.3/xxx.vmoptions xxx为你安装的APP名称, 如 Clion .IntelliJIdea 这里的自定义配置如果配置有误就会直接导致JetBrains软件无法打开, 即 点击打开…

HBase 集群搭建

文章目录 安装前准备兼容性官方网址 集群搭建搭建 Hadoop 集群搭建 Zookeeper 集群解压缩安装配置文件高可用配置分发 HBase 文件 服务的启停启动顺序停止顺序 验证进程查看 Web 端页面 安装前准备 兼容性 1)与 Zookeeper 的兼容性问题,越新越好&#…

Prometheus 14 点实践经验分享

这是 2017 年的 promcon 的分享,原文地址在这里,作者 Julius Volz,今天偶然看到,虽然已经过去 6 年,有些实践经验还是非常值得学习。做个意译,加入一些自己的理解,分享给大家。 埋点方面 1. 所…

Java创建线程执行任务的方法(一)

目录 1.继承Thread类 2.实现Runnab类 2.1实现Runnable类 2.2使用Lambda表达式 3.实现Callable类 3.1返回Integer类型数据 3.2返回String类型数据 3.3返回Object类型数据 4.匿名内部类 创建线程的方法:继承Thread类;实现Runnab类;匿名…

国内联合办公江湖风云录

国内的联合办公市场自诞生之时便注定不平凡。在全球化与互联网的双重推动下,这个市场以闪电般的速度蓄力并爆发,闻名于世。随着越来越多的创业者及中小企业的兴起,对于灵活、经济、有社群支持的办公环境的需求不断攀升。与此同时,…

移动机器人规划、控制算法初识

规划与控制PNC(PlanningandControl) 1 路径规划算法: 移动机器人路径规划算法总结_机器人运动轨迹算法-CSDN博客 2 控制算法: 机器人控制算法综述_机器人控制技术综述-CSDN博客 机器人控制算法简要概述_智能控制算法-CSDN博客 学习资源: …