基于YOLOv8的遥感SAR舰船小目标识别

 💡💡💡本文摘要:基于YOLOv8的遥感SAR舰船小目标,阐述了整个数据制作和训练可视化过程

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.遥感SAR舰船数据集介绍

  SSDD总共包含1160张图片,2456个舰船,平均每张图片的舰船数量为2.12

按照7:2:1划分了training val test

2.1 split_train_val.py

# coding:utf-8import os
import random
import argparseparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()trainval_percent = 0.9
train_percent = 0.7
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

2.2 voc_label.py生成适合YOLOv8训练的txt

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ["ship"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').text#difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('labels/'):os.makedirs('labels/')image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

3.如何训练YOLOv8

3.1 配置SSDD.yaml

ps:建议填写绝对路径

path:./data/SSDD  # dataset root dir
train: train.txt  # train images (relative to 'path') 118287 images
val: val.txt  # val images (relative to 'path') 5000 images# number of classes
nc: 1# class names
names:0: ship

3.2 如何训练

from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/attention/yolov8.yaml')#model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='data/SSDD/SSDD.yaml',cache=False,imgsz=640,epochs=200,batch=16,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGDproject='runs/train',name='exp',)

3.3 训练可视化结果

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

YOLOv8 summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 10/10 [00:07<00:00,  1.38it/s]all        314        719       0.94      0.935      0.968      0.625

预测结果: 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/307488.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何从RTP包的AP类型包,获取h265的PPS、SPS、VPS信息

ffmpeg播放rtp流&#xff0c;为了降低首开延迟&#xff0c;需要在SDP文件中指定PPS、SPS、VPS信息。抓包后发现wireshark无法解析AP包。需要自己进行AP包解析。RTP协议AP包格式如下&#xff1a; 根据如上信息&#xff0c;我们可以解析AP包&#xff0c;效果如下 40 01&#xff…

MPI并行程序设计 —— C 和 fortran 环境搭建 openmpi 示例程序

1.安装环境 wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.6.tar.g tar zxf openmpi-4.1.6.tar.gz cd openmpi-4.1.6/ 其中 configure 选项 --prefix/.../ 需要使用绝对路径&#xff0c;例如&#xff1a; ./configure --prefix/home/hipper/ex_open…

【C++干货铺】STL中set和map的介绍和使用

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 序列式容器 关联式容器 键值对 树形结构的关联式容器 set set的介绍 set的使用 set的模板参数列表 set的构造 ​编辑 set的容量 set的删除和查找 mult…

4.16 构建onnx结构模型-And

前言 构建onnx方式通常有两种&#xff1a; 1、通过代码转换成onnx结构&#xff0c;比如pytorch —> onnx 2、通过onnx 自定义结点&#xff0c;图&#xff0c;生成onnx结构 本文主要是简单学习和使用两种不同onnx结构&#xff0c; 下面以 And 结点进行分析 方式 方法一&…

马斯克谈六西格玛:管理质量与火箭科学如何相辅相成

如果你问我&#xff0c;作为一个有志于送人类上火星的家伙&#xff0c;六西格玛管理有没有用&#xff1f;我会说&#xff0c;如果把火箭控制的精度与六西格玛得到的生产质量相比&#xff0c;你会发现两者都追求同一件事&#xff1a;接近零缺陷的完美。 六西格玛不只是一组工具…

【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于FSRCNN的TPU平台超分辨率模型部署方案

2023 CCF 大数据与计算智能大赛 基于TPU平台实现超分辨率重建模型部署 基于FSRCNN的TPU平台超分辨率模型部署方案 WELL 刘渝 人工智能 研一 西安交通大学 中国-西安 1461003622qq.com 史政立 网络空间安全 研一 西安交通大学 中国-西安 1170774291qq.com 崔琳、张…

MySQL报错:1366 - Incorrect integer value: ‘xx‘ for column ‘xx‘ at row 1的解决方法

我在插入表数据时遇到了1366报错&#xff0c;报错内容&#xff1a;1366 - Incorrect integer value: Cindy for column name at row 1&#xff0c;下面我演示解决方法。 根据上图&#xff0c;原因是Cindy’对应的name字段数据类型不正确。我们在左侧找到该字段所在的grade_6表&…

MySQL的日志管理以及备份和恢复

MySQL日志管理 mysql的日志默认保存位置为/usr/local/mysql/data vim /etc/my.cnf #开启二进制日志功能 vim /etc/my.cnf [mysqld]##错误日志&#xff0c;用来记录当MySQL启动、停止或运行时发生的错误信息&#xff0c;默认已开启 log-error/usr/local/mysql/data/mysql_…

RabbitMQ 核心概念(交换机、队列、路由键),队列类型等介绍

RabbitMQ 核心概念(交换机、队列、路由键)&#xff0c;队列类型等介绍 RabbitMQ 是一个消息队列系统&#xff0c;它的核心概念包括交换机&#xff08;Exchange&#xff09;、队列&#xff08;Queue&#xff09;和路由键&#xff08;Routing Key&#xff09;&#xff0c;它们一起…

shiro1.13认证流程核心-非框架整合版本

本案例测试使用的是shiro1.13.0最新版本测试 1、shiro概述&#xff1f; Apache Shiro是java的一个安全框架&#xff0c;能够实现&#xff1a;认证、授权、加密、会话管理、与Web集成、缓存等。 认证&#xff1a;本质就是判断你输入的用户名和密码跟数据库的是否相同。 授权&am…

售后客服日常回复必备的话术

致歉安抚通用 1.非常抱歉耽误您宝贵的时间了&#xff0c;这边给您查询一下&#xff0c;请稍等。 2.非常抱歉&#xff0c;给您添麻烦了。这边为您转接售后专员给您处理&#xff0c;请亲稍等。 3.影响到您的购物体验万分抱歉。 4.这边都会给您尽心解决的呢。 5.我非常理解您…

全新研发体系助力产品落地 传音控股成科技出海代表

一直以来&#xff0c;手机都被认为是所有新技术的最佳应用载体&#xff0c;尤其是在数字化、智能化时代&#xff0c;技术创新能力决定着手机厂商的生存与发展。 作为全球新兴市场手机行业的中坚力量之一&#xff0c;传音控股始终坚持以技术创新为驱动&#xff0c;围绕用户需求…