计算机视觉技术-锚框

目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边界从而更准确地预测目标的真实边界框(ground-truth bounding box)。 不同的模型使用的区域采样方法可能不同。 这里我们介绍其中的一种方法:以每个像素为中心,生成多个缩放比和宽高比(aspect ratio)不同的边界框。 

首先,让我们修改输出精度,以获得更简洁的输出。

%matplotlib inline
import torch
from d2l import torch as d2ltorch.set_printoptions(2)  # 精简输出精度

生成多个锚框

假设输入图像的高度为h,宽度为w。 我们以图像的每个像素为中心生成不同形状的锚框:缩放比s∈(0,1],宽高比r>0。 那么锚框的宽度和高度分别是hs\sqrt{r}hs/\frac{}{}\sqrt{r}。 请注意,当中心位置给定时,已知宽和高的锚框是确定的。

也就是说,以同一像素为中心的锚框的数量是n+m-1。 对于整个输入图像,将共生成wh(n+m-1)个锚框。

上述生成锚框的方法在下面的multibox_prior函数中实现。 我们指定输入图像、尺寸列表和宽高比列表,然后此函数将返回所有的锚框。

#@save
def multibox_prior(data, sizes, ratios):"""生成以每个像素为中心具有不同形状的锚框"""in_height, in_width = data.shape[-2:]device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)boxes_per_pixel = (num_sizes + num_ratios - 1)size_tensor = torch.tensor(sizes, device=device)ratio_tensor = torch.tensor(ratios, device=device)# 为了将锚点移动到像素的中心,需要设置偏移量。# 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5offset_h, offset_w = 0.5, 0.5steps_h = 1.0 / in_height  # 在y轴上缩放步长steps_w = 1.0 / in_width  # 在x轴上缩放步长# 生成锚框的所有中心点center_h = (torch.arange(in_height, device=device) + offset_h) * steps_hcenter_w = (torch.arange(in_width, device=device) + offset_w) * steps_wshift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)# 生成“boxes_per_pixel”个高和宽,# 之后用于创建锚框的四角坐标(xmin,xmax,ymin,ymax)w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),sizes[0] * torch.sqrt(ratio_tensor[1:])))\* in_height / in_width  # 处理矩形输入h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),sizes[0] / torch.sqrt(ratio_tensor[1:])))# 除以2来获得半高和半宽anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(in_height * in_width, 1) / 2# 每个中心点都将有“boxes_per_pixel”个锚框,# 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],dim=1).repeat_interleave(boxes_per_pixel, dim=0)output = out_grid + anchor_manipulationsreturn output.unsqueeze(0)

可以看到返回的锚框变量Y的形状是(批量大小,锚框的数量,4)。

img = d2l.plt.imread('../img/catdog.jpg')
h, w = img.shape[:2]print(h, w)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape

 561 728

 torch.Size([1, 2042040, 4])

tensor([0.06, 0.07, 0.63, 0.82]) 

为了显示以图像中以某个像素为中心的所有锚框,定义下面的show_bboxes函数来在图像上绘制多个边界框。

#@save
def show_bboxes(axes, bboxes, labels=None, colors=None):"""显示所有边界框"""def _make_list(obj, default_values=None):if obj is None:obj = default_valueselif not isinstance(obj, (list, tuple)):obj = [obj]return objlabels = _make_list(labels)colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])for i, bbox in enumerate(bboxes):color = colors[i % len(colors)]rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)axes.add_patch(rect)if labels and len(labels) > i:text_color = 'k' if color == 'w' else 'w'axes.text(rect.xy[0], rect.xy[1], labels[i],va='center', ha='center', fontsize=9, color=text_color,bbox=dict(facecolor=color, lw=0))

正如从上面代码中所看到的,变量boxesx轴和y轴的坐标值已分别除以图像的宽度和高度。 绘制锚框时,我们需要恢复它们原始的坐标值。 因此,在下面定义了变量bbox_scale。 现在可以绘制出图像中所有以(250,250)为中心的锚框了。 如下所示,缩放比为0.75且宽高比为1的蓝色锚框很好地围绕着图像中的狗。

d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2','s=0.75, r=0.5'])

 

交并比(IoU)

我们刚刚提到某个锚框“较好地”覆盖了图像中的狗。 如果已知目标的真实边界框,那么这里的“好”该如何如何量化呢? 直观地说,可以衡量锚框和真实边界框之间的相似性。 杰卡德系数(Jaccard)可以衡量两组之间的相似性。 给定集合\alpha\beta,他们的杰卡德系数是他们交集的大小除以他们并集的大小。

事实上,我们可以将任何边界框的像素区域视为一组像素。通 过这种方式,我们可以通过其像素集的杰卡德系数来测量两个边界框的相似性。 对于两个边界框,它们的杰卡德系数通常称为交并比(intersection over union,IoU),即两个边界框相交面积与相并面积之比,如下图所示。 交并比的取值范围在0和1之间:0表示两个边界框无重合像素,1表示两个边界框完全重合。

接下来部分将使用交并比来衡量锚框和真实边界框之间、以及不同锚框之间的相似度。 给定两个锚框或边界框的列表,以下box_iou函数将在这两个列表中计算它们成对的交并比。

#@save
def box_iou(boxes1, boxes2):"""计算两个锚框或边界框列表中成对的交并比"""box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *(boxes[:, 3] - boxes[:, 1]))# boxes1,boxes2,areas1,areas2的形状:# boxes1:(boxes1的数量,4),# boxes2:(boxes2的数量,4),# areas1:(boxes1的数量,),# areas2:(boxes2的数量,)areas1 = box_area(boxes1)areas2 = box_area(boxes2)# inter_upperlefts,inter_lowerrights,inters的形状:# (boxes1的数量,boxes2的数量,2)inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)# inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)inter_areas = inters[:, :, 0] * inters[:, :, 1]union_areas = areas1[:, None] + areas2 - inter_areasreturn inter_areas / union_areas

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/308349.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch:使用 ELSER v2 文本扩展进行语义搜索

Elastic 提供了一个强大的 ELSER 供我们进行语义搜索。ELSER 是一种稀疏向量的搜索方法。我们无需对它做任何的微调及训练。它是一种 out-of-domain 的模型。目前它仅对英文进行支持。希望将来它能对其它的语言支持的更好。更多关于 ELSER 的知识,请参阅文章 “Elas…

根据文法求对应的语言

技巧:最后得到的是终结符组成的闭包 例题: 文法G[S]: S-->AB A-->aAb|ab B-->Bc|,求对应的语言 ①S-->(aAb|ab)(Bc|) ②我们可以观察到,无论A-->aAb还是A-->ab,都一定会同时出现ab,…

66biolinks v42.0.0 已注册 – 生物短链接、URL 缩短器、QR 码和 Web 工具 (SAAS) 源码

66biolinks v42.0.0:全能生物短链接与网络工具平台 一、开篇介绍 66biolinks v42.0.0是一款集生物链接、URL缩短器、二维码和网络工具于一体的综合性软件解决方案。作为社交生物链接平台的佼佼者,66biolinks提供了全方位的功能,旨在满足用户…

【并发设计模式】聊聊线程本地存储模式如何实现的线程安全

前面两篇文章,通过两阶段终止的模式进行优雅关闭线程,利用数据不变性的方式保证数据安全,以及基于COW的模式,保证读数据的安全。本篇我们来简述下如果利用线程本地存储的方式保证线程安全。 首先一个大前提就是并发问题&#xff…

Python武器库开发-武器库篇之上传本地仓库到Git(三十八)

武器库篇之上传本地仓库到Git(三十八) 当我们在Git中创建远程仓库和进行了SSH key免密登陆之后,我们点击 Your respositories 可以查看我们所创建的远程仓库,如图所示: 如果我们需要将本地的仓库上传到Git,首先我们需要建立一个本…

Python 实现 PDF 到 Word 文档的高效转换(DOC、DOCX)

PDF(Portable Document Format)已成为一种广泛使用的电子文档格式。PDF的主要优势是跨平台,可以在不同设备上呈现一致的外观。然而,当我们需要对文件内容进行编辑或修改,直接编辑PDF文件会非常困难,而且效果…

鸿蒙系列--组件介绍之容器组件

一、Badge 描述:给其他组件添加标记 子组件:支持单个子组件 1.创建数字标记 Badge(value: {count: number, position?: BadgePosition, maxCount?: number, style: BadgeStyle}) 2.创建字符串标记 Badge(value: {value: string, position?: Badge…

初识Sringboot3+vue3环境准备

环境准备 后端环境准备 下载JDK17https://www.oracle.com/java/technologies/downloads/#jdk17-windows 安装就下一步下一步,选择安装路径 配置环境 环境 JDK17、IDEA2021、maven3.5、vscode 后端 基础:javaSE,javaWeb、JDBC、SMM框架(Spr…

QT上位机开发(掌握一点c++基础)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 c是c语言的补充和扩展,本身的语法构成也是在一直迭代中。相信很多同学上大学读书的时候,或多或少对c语言有所了解&#xff…

CENTOS docker拉取私服镜像

概述 docker的应用越来越多,安装部署越来越方便,批量自动化的镜像生成和发布都需要docker镜像的拉取。 centos6版本太老,docker的使用过程中问题较多,centos7相对简单容易。 本文档主要介绍centos系统安装docker和拉取docker私…

一些深度学习训练过程可视化以及绘图工具

常见的可视化方法 深度学习训练过程的可视化是一个重要的环节,它可以帮助研究人员和工程师更好地理解和调整他们的模型。常见的可视化方法包括: 损失和准确率曲线: 这是最常见的可视化类型,通常在训练过程中绘制损失函数和准确率…

mac安装k8s环境

安装kubectl brew install kubectl 确认一下安装的版本 kubectl version --client 如果想在本地运行kubernetes 需要安装minikube brew install minikube 需要注意安装minikube需要本地的docker服务是启动的 启动 默认连接的是google的仓库 minikube start 指定阿…