python测试工具: 实现数据源自动核对

测试业务需要:

现有A系统作为下游数据系统,上游系统有A1,A2,A3...

需要将A1,A2,A3...的数据达到某条件后(比如:A1系统销售单提交出库成功)自动触发MQ然后再经过数据清洗落到A系统,并将清洗后数据通过特定规则汇总在A系统报表中

现在需要QA同学验证的功能是:

A系统存储数据清洗后的库表(为切片表)有几十个,且前置系统较多,测试工作量也较多

需要核对清洗后A存库数据是否准确

清洗规则:(1)直接取数 (2)拼接取数 (3)映射取数

直接取数字段在2系统表中字段命名规则一致

so,以下测试工具是针对直接取数规则来开发,以便于测试

代码实现步骤:

(1)将表字段,来源系统表和切片表 数据库链接信息,查询字段 作为变量

将这些信息填入input.xlsx 作为入参

(2)读取表字段,根据来源系统表 数据库链接信息,查询字段

查询来源库表,将查询出字段值存储outfbi.xlsx

  (3)读取表字段,根据切片表 数据库链接信息,查询字段

查询切片库表,将查询出字段值存储outods.xlsx

(4)对比outfbi.xlsx,outods.xlsx的字段值

对比后生成result.xlsx文件,新增列校验结果

核对字段值一致校验结果为Success,否则为Fail

代码如下:

入参文件见附件

DbcheckApi.py
import os
import pymysql
import pandas as pd
from openpyxl import load_workbook
from openpyxl.styles import PatternFill
import datetime
import ast"""测试数据路径管理"""
SCRIPTS_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
GENERATECASE_DIR = os.path.join(SCRIPTS_DIR, "dbcheck")
inputDATAS_DIR = os.path.join(GENERATECASE_DIR, "inputdata")
outDATAS_DIR = os.path.join(GENERATECASE_DIR, "outdata")class DbcheckApi():def __init__(self,data):self.inputexcel=dataworkbook = load_workbook(filename=self.inputexcel)sheet = workbook['数据源']# 读取来源表-连接信息sourcedb_connection_info = ast.literal_eval(sheet['B3'].value)odsdb_connection_info = ast.literal_eval(sheet['B4'].value)source_db = sheet['C3'].value.strip()ods_db = sheet['C4'].value.strip()source_queryby = sheet['D3'].value.strip()ods_queryby = sheet['D4'].value.strip()print(sourcedb_connection_info)print(odsdb_connection_info)print(source_db)print(ods_db)print(source_queryby)print(ods_queryby)self.sourcedb = sourcedb_connection_infoself.odsdb = odsdb_connection_infoself.source_db = source_dbself.ods_db = ods_dbself.source_queryby = source_querybyself.ods_queryby = ods_querybydef source_select_db(self):host = self.sourcedb.get('host')port = self.sourcedb.get('port')user = self.sourcedb.get('user')passwd = self.sourcedb.get('passwd')db = self.sourcedb.get('db')if not host or not port or not user or not passwd or not db:error_msg = "连接信息不完整"return {"code": -1, "msg": error_msg, "data": ""}cnnfbi = pymysql.connect(host=host,port=port,user=user,passwd=passwd,db=db)cursor = cnnfbi.cursor()try:# 读取Excel文件df = pd.read_excel(self.inputexcel, sheet_name='Sheet1')# 获取第1列,从第2行开始读取的字段名fields = df.iloc[1:, 0].tolist()print(fields)# 构建查询SQL语句sql = "SELECT {} FROM {} WHERE {}".format(', '.join(fields), self.source_db, self.source_queryby)print(sql)# 执行查询语句cursor.execute(sql)except pymysql.err.OperationalError as e:error_msg = str(e)if "Unknown column" in error_msg:column_name = error_msg.split("'")[1]msg={"code": -1, "msg": f"列字段 {column_name} 在 "+self.source_db+" 表结构中不存在,请检查!", "data": ""}print(msg)return {"code": -1, "msg": f"列字段 {column_name} 在 "+self.source_db+" 表结构中不存在,请检查!", "data": ""}else:return {"code": -1, "msg": error_msg, "data": ""}print(error_msg)# 获取查询结果result = cursor.fetchall()# 关闭游标和连接cursor.close()cnnfbi.close()# 检查查询结果是否为空if not result:return {"code": -1, "msg": f"查询无数据,请检查sql: {sql}", "data": ""}else:# 将结果转换为DataFrame对象df = pd.DataFrame(result, columns=fields)odskey=self.source_db+'表-字段'odsvalue=self.source_db+'表-字段值'# 创建新的DataFrame对象,将字段和对应值放在两列df_new = pd.DataFrame({odskey: fields, odsvalue: df.iloc[0].values})outexcel = os.path.join(outDATAS_DIR,  'outputfbi.xlsx')# 导出结果到Excel文件df_new.to_excel(outexcel, index=False)def ods_select_db(self):host = self.odsdb.get('host')port = self.odsdb.get('port')user = self.odsdb.get('user')passwd = self.odsdb.get('passwd')db = self.odsdb.get('db')if not host or not port or not user or not passwd or not db:raise ValueError("连接信息不完整")cnnfbi = pymysql.connect(host=host,port=port,user=user,passwd=passwd,db=db)cursor = cnnfbi.cursor()try:# 读取Excel文件df = pd.read_excel(self.inputexcel, sheet_name='Sheet1')# 获取第1列,从第2行开始读取的字段名fields = df.iloc[1:, 0].tolist()print(fields)# 构建查询SQL语句sql = "SELECT {} FROM {} WHERE {}".format(', '.join(fields), self.ods_db, self.ods_queryby)print(sql)# 执行查询语句cursor.execute(sql)except pymysql.err.OperationalError as e:error_msg = str(e)if "Unknown column" in error_msg:column_name = error_msg.split("'")[1]return {"code": -1, "msg": f"列 {column_name} 不存在"+self.ods_db+" 表结构中,请检查!", "data": ""}else:return {"code": -1, "msg": error_msg, "data": ""}# 获取查询结果result = cursor.fetchall()# 关闭游标和连接cursor.close()cnnfbi.close()# 将结果转换为DataFrame对象df = pd.DataFrame(result, columns=fields)# 创建新的DataFrame对象,将字段和对应值放在两列odskey=self.ods_db+'表-字段'odsvalue=self.ods_db+'表-字段值'df_new = pd.DataFrame({odskey: fields, odsvalue: df.iloc[0].values})# 导出结果到Excel文件outexcel = os.path.join(outDATAS_DIR,  'outputfms.xlsx')df_new.to_excel(outexcel, index=False)def check_order(self):self.source_select_db()self.ods_select_db()outputfbi = os.path.join(outDATAS_DIR,  'outputfbi.xlsx')outputfms = os.path.join(outDATAS_DIR,  'outputfms.xlsx')df_a = pd.read_excel(outputfbi)df_b = pd.read_excel(outputfms)# 创建新的DataFrame对象用于存储C表的数据df_c = pd.DataFrame()# 将A表的列写入C表for col in df_a.columns:df_c[col] = df_a[col]# 将B表的列���入C表for col in df_b.columns:df_c[col] = df_b[col]odsvalue=self.ods_db+'表-字段值'fbivalue=self.source_db+'表-字段值'# 比对A2和B2列的值,如果不一致,则在第5列写入"校验失败"df_c['校验结果'] = ''for i in range(len(df_c)):if pd.notnull(df_c.at[i, fbivalue]) and pd.notnull(df_c.at[i, odsvalue]):fbivalue_rounded = df_c.at[i, fbivalue]odsvalue_rounded = df_c.at[i, odsvalue]if isinstance(fbivalue_rounded, (int, float)):fbivalue_rounded = round(fbivalue_rounded, 3)elif isinstance(fbivalue_rounded, datetime.datetime):fbivalue_rounded = round(fbivalue_rounded.timestamp(), 3)else:try:fbivalue_rounded = round(float(fbivalue_rounded), 3)except ValueError:passif isinstance(odsvalue_rounded, (int, float)):odsvalue_rounded = round(odsvalue_rounded, 3)elif isinstance(odsvalue_rounded, datetime.datetime):odsvalue_rounded = round(odsvalue_rounded.timestamp(), 3)else:try:odsvalue_rounded = round(float(odsvalue_rounded), 3)except ValueError:passif fbivalue_rounded != odsvalue_rounded:df_c.at[i, '校验结果'] = 'Fail'else:df_c.at[i, '校验结果'] = 'Success'# 将结果写入到C.xlsx文件df_c.to_excel('checkhead_result.xlsx', index=False)# 打开C.xlsx文件并设置背景色book = load_workbook('checkhead_result.xlsx')writer = pd.ExcelWriter('checkhead_result.xlsx', engine='openpyxl')writer.book = book# 获取C.xlsx的工作表sheet_name = 'Sheet1'ws = writer.book[sheet_name]# 设置背景色为红色red_fill = PatternFill(start_color='FFFF0000', end_color='FFFF0000', fill_type='solid')# 遍历校验结果列,将不一致的单元格设置为红色背景for row in ws.iter_rows(min_row=2, min_col=len(df_c.columns), max_row=len(df_c), max_col=len(df_c.columns)):for cell in row:if cell.value == 'Fail':cell.fill = red_fill# 保存Excel文件writer.save()writer.close()if __name__ == '__main__':inputexcel = os.path.join(inputDATAS_DIR,  'input.xlsx')DbcheckApi(inputexcel).check_order()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/308811.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树的中序遍历,力扣

目录 题目地址: 题目: 解题方法: 解题分析: 解题思路: 代码实现: 注: 代码实现(递归): 代码实现(迭代): 题目地址&#xf…

【Vue】computed详解

✨ 专栏介绍 在当今Web开发领域中,构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架,正是为了满足这些需求而诞生。它采用了MVVM架构模式,并通过数据驱动和组件化的方式,使…

java cpu使用率高排查

1、top 找到对应进程,如这里是4060434 2、找线程 ps H -eo pid,tid,%cpu | grep 4060434找到那个线程id 高的 如4066606 3、转化16进制 printf 0x%x\n 40666064、找16进制对应的运行信息 jstack 4060434 | grep 0x3e0d2e -A 20

TypeScript源码中的一个很有意思的简写

在读TypeScript源码时,发现一个很有意思的简写 : return scriptInfo ? scriptInfo.getDefaultProject() : (this.logErrorForScriptInfoNotFound(isString(fileNameOrScriptInfo) ? fileNameOrScriptInfo : fileNameOrScript…

ViT的极简pytorch实现及其即插即用

先放一张ViT的网络图 可以看到是把图像分割成小块,像NLP的句子那样按顺序进入transformer,经过MLP后,输出类别。每个小块是16x16,进入Linear Projection of Flattened Patches, 在每个的开头加上cls token和位置信息,…

数模混合SoC芯片中LEF2Milkyway的golden flow

在数模混合芯片中的项目中,特别是数字模块很少甚至只有一个简单的数字控制逻辑时,我们要做数字模块的后端实现时,通常模拟那边会问我们实现需要他们提供哪些数据。 通常来说,我们可以让模拟设计提供数字模块的GDS或LEF文件即可。…

tcp/ip实现两个手机之间连接同步显示

app主界面 选择一:TCP客户端 选择二:TCP服务端 点击下图item时进入曲线绘制页面 如果是服务器端它不需要连任何设备就可以直接进入绘制界面如果是TCP的话就不能直接进入,否则就会提示未连接网络连接不能放在主线程,页面去调方法&…

2023年末,软件测试面试题总结与分享

大家好,最近有不少小伙伴在后台留言,得准备年后面试了,又不知道从何下手!为了帮大家节约时间,特意准备了一份面试相关的资料,内容非常的全面,真的可以好好补一补,希望大家在都能拿到…

Oracle VirtualBox中Linux系统基本使用方法——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项

前言 小北的这篇博客介绍的是关于用VirtualBox中下载好的ubuntu系统中,为搭建Hadoop平台所做的命令操作准备,希望能帮助不会的人有指引作用。 没有安装好VirtualBox中的ubuntu系统以及创建Hadoop账户的请参考小北之前的三篇博客: ubuntu18…

探索大型预训练模型:解析人工智能的通用知识引擎

目录 前言1 大型预训练模型的演进与重要性1.1 Word2Vec1.2 Transformer1.3 GPT模型 2 大型预训练模型的发展趋势2.1 参数规模与速度的飞跃提升2.2 数据量的持续增长2.3 知识丰富性与少样本学习的突破 3 大型预训练模型的核心机制结语 前言 在当今迅猛发展的人工智能领域&#…

C++系列-第1章顺序结构-4-整型int

C系列-第1章顺序结构-4-整型int 在线练习: http://noi.openjudge.cn/ https://www.luogu.com.cn/ 总结 本文是C系列博客,主要讲述整型int的用法 整型int 在C中,int 是一个关键字,用于声明整型变量。int 类型用于存储整数&…

基于流程挖掘的保险理赔优化策略实践

引言 在当今日益竞争的商业环境中,保险公司面临着日益增长的业务量和客户期望的挑战。特别是在理赔领域,理赔是保险行业的重要环节,也是保险公司和客户之间最直接的联系点。然而,长周期和繁琐的理赔流程常常给保险公司和投保人带来困扰。因此,如何提供准确且高效的理赔处…