理解ByteBuffer

Buffer 的使用

我们通过 Java 中 NIO 包中实现的 Buffer 来给大家讲解,Buffer 总共有 7 种实现,就包含了 Java 中实现的所有数据类型。

本篇文章中,我们使用的是 ByteBuffer,其常用的方法都有:

  • put
  • get
  • flip
  • rewind
  • mark
  • reset
  • clear

接下来我们就通过实际的例子来了解这些方法。

put

put 就是往 ByteBuffer 里写入数据,其有有很多重载的实现:

public ByteBuffer put(ByteBuffer src) {...}public ByteBuffer put(byte[] src, int offset, int length) {...}public final ByteBuffer put(byte[] src) {...}

我们可以直接传入 ByteBuffer 对象,也可以直接传入原生的 byte 数组,还可以指定写入的 offset 和长度等等。接下来看个具体的例子:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s','h'});
}

为了能让大家更直观的看出 ByteBuffer 内部的情况,我将它整理成了图的形式。当上面的代码运行完之后 buffer 的内部长这样:

当你尝试使用 System.out.println(buffer) 去打印变量 buffer 的时候,你会看到这样的结果:

java.nio.HeapByteBuffer[pos=2 lim=16 cap=16]

图里、控制台里都有 position 和 limit 变量,capacity 大家能理解,就是我们创建这个 ByteBuffer 的制定的大小 16

而至于另外两个变量,相信大家从图中也可以看出来,position 变量指向的是下一次要写入的下标,上面的代码我们只写入了 2 个字节,所以 position 指向的是 2,而这个 limit 就比较有意思了,这个在后面的使用中结合例子一起讲。

get

get 是从 ByteBuffer 中获取数据。

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s','h'});System.out.println(buffer.get());
}

如果你运行完上面的代码你会发现,打印出来的结果是 0 ,并不是我们期望的 s 的 ASCII 码 115

首先告诉大家结论,这是符合预期的,这个时候就不应该能获取到值。我们来看看 get 的源码:

public byte get() { return hb[ix(nextGetIndex())]; }protected int ix(int i) { return i + offset; }final int nextGetIndex() {                          int p = position;if (p >= limit)throw new BufferUnderflowException();// 这里 position 会往后移动一位position = p + 1;return p;
}

当前 position 是 2,而 limit 是 16,所以最终 nextGetIndex 计算出来的值就是变量 p 的值 2 ,再过一次 ix ,那就是 2 + 0 = 2,这里的 offset 的值默认为 0 。

所以简单来说,最终会取到下标为 2 的数据,也就是下图这样。

所以我们当然获取不到数据。但是这里需要关注的是,调用 get 方法虽然没有获取到任何数据,但是会使得 position 指针往后移动。换句话说,会占用一个位置。如果连续调用几次这种 get 之后,再调用 put 方法写入数据,就会造成有几个位置没有赋值。举个例子,假设我们运行以下代码:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s','h'});buffer.get();buffer.get();buffer.get();buffer.get();buffer.put(new byte[]{'e'});
}

数据就会变成下图这样,position 会往后移动

那你可能会问,那我真的需要获取数据咋办?在这种情况下,可以像这样获取:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s'});System.out.println(buffer.get(0)); // 115
}

传入我们想要获取的下标,就可以直接获取到,并且不会造成 position 的后移。

看到这那你更懵逼了,合着 get() 就没法用呗?还必须要给个 index。这就需要聊一下另一个方法 flip了。

flip

废话不多说,先看看例子:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s', 'h'}); // java.nio.HeapByteBuffer[pos=2 lim=16 cap=16]buffer.flip();System.out.println(buffer); // java.nio.HeapByteBuffer[pos=0 lim=2 cap=16]
}

有意思的事情发生了,调用了 flip 之后,position 从 2 变成了 0,limit 从 16 变成了 2。

这个单词是「 翻动」的意思,我个人的理解是像翻东西一样把之前存的东西全部翻一遍

你会发现,position 变成了 0,而 limit 变成 2,这个范围刚好是有值的区间

接下来就更有意思了:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s', 'h'});buffer.flip();System.out.println((char)buffer.get()); // sSystem.out.println((char)buffer.get()); // h
}

调用了 flip 之后,之前没法用的 get() 居然能用了。结合 get 中给的源码不难分析出来,由于 position 变成了 0,最终计算出来的结果就是 0,同时使 position 向后移动一位。

终于到这了,你可以理解成 Buffer 有两种状态,分别是:

  • 读模式
  • 写模式

刚刚创建出来的 ByteBuffer 就处于一个写模式的状态,通过调用 flip 我们可以将 ByteBuffer 切换成读模式。但需要注意,这里讲的读、写模式只是一个逻辑上的概念

举个例子,当调用 flip 切换到所谓的写模式之后,依然能够调用 put 方法向 ByteBuffer 中写入数据。

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s', 'h'});buffer.flip();buffer.put(new byte[]{'e'});
}

这里的 put 操作依然能成功,但你会发现最后写入的 e 覆盖了之前的数据,现在 ByteBuffer 的值变成了 eh 而不是 sh 了。

所以你现在应该能够明白,读模式、写模式更多的含义应该是:

  • 方便你模式
  • 方便你模式
顺带一提,调用 flip 进入写读模式之后,后续如果调用  get() 导致  position  大于等于了  limit 的值,程序会抛出  BufferUnderflowException 异常。这点从之前  get 的源码也可以看出来。

rewind

rewind 你也可以理解成是运行在读模式下的命令,给大家看个例子:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'s', 'h'});buffer.flip();System.out.println((char)buffer.get()); // sSystem.out.println((char)buffer.get()); // h// 从头开始读buffer.rewind();System.out.println((char)buffer.get()); // sSystem.out.println((char)buffer.get()); // h
}

所谓的从头开始读就是把 position 给归位到下标为 0 的位置,其源码也很简单:

public final Buffer rewind() {position = 0;mark = -1;return this;
}

就是简单的把 position 赋值为 0,把 mark 赋值为 -1。那这个 mark 又是啥东西?这就是我们下一个要聊的方法。

mark & reset

mark 用于标记当前 postion 的位置,而 reset 之所以要放到一起讲是因为 reset 是 reset 到 mark 的位置,直接看例子:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'a', 'b', 'c', 'd'});// 切换到读模式buffer.flip();System.out.println((char) buffer.get()); // aSystem.out.println((char) buffer.get()); // b// 控记住当前的 positionbuffer.mark();System.out.println((char) buffer.get()); // cSystem.out.println((char) buffer.get()); // d// 将 position reset 到 mark 的位置buffer.reset();System.out.println((char) buffer.get()); // cSystem.out.println((char) buffer.get()); // d
}

可以看到的是 ,我们在 position 等于 2 的时候,调用了 mark 记住了 position 的位置。然后遍历完了所有的数据。然后调用 reset 使得 position 回到了 2 的位置,我们继续调用 get ,c d 就又可以被打印出来了。

clear

clear 表面意思看起来是将 buffer 清空的意思,但其实不是,看这个:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'a', 'b', 'c', 'd'});
}

put 完之后,buffer 的情况是这样的。

当我们调用完 clear 之后,buffer 就会变成这样。

所以,你可以理解为,调用 clear 之后只是切换到了写模式,因为这个时候往里面写数据,会覆盖之前写的数据,相当于起到了 clear 作用,再举个例子:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put(new byte[]{'a', 'b', 'c', 'd'});buffer.clear();buffer.put(new byte[]{'s','h'});
}

可以看到,运行完之后 buffer 的数据变成了 shcd,后写入的数据将之前的数据给覆盖掉了。

除了 clear 可以切换到写模式之外,还有另一个方法可以切换,这就是本篇要讲的最后一个方法 compact

compact

先一句话给出 compact 的作用:将还没有读完的数据挪到 Buffer 的首部,并切换到写模式,代码如下:

public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(16);buffer.put("abcd".getBytes(StandardCharsets.UTF_8));// 切换到读模式buffer.flip();System.out.println((char) buffer.get()); // a// 将没读过的数据, 移到 buffer 的首部buffer.compact(); // 此时 buffer 的数据就会变成 bcdd
}

当运行完 flip 之后,buffer 的状态应该没什么问题了:

而 compact 之后发生了什么呢?简单来说就两件事:

  1. 将 position 移动至对应的位置
  2. 将没有读过的数据移动到 buffer 的首部

这个对应是啥呢?先给大家举例子;例如没有读的数据是 bcd,那么 position 就为 3;如果没有读的数据为 cdposition 就为 2。所以你发现了,position 的值为没有读过的数据的长度

从 buffer 内部实现机制来看,凡是在 position - limit 这个区间内的,都算没有读过的数据

所以,当运行完 compact 之后,buffer 长这样:

limit 为 16 是因为 compact 使 buffer 进入了所谓的 写模式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/309882.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

递归详解之青蛙跳台阶和汉诺塔问题

𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”。…

<PDF-Pics> support

If get any questions,email me caohechunhotmail.com

SpringBoot 日志打印

一. 自定义打印日志 开发者自定义打印日志实现步骤: • 在程序中得到日志对象 • 使用日志对象的相关语法输出要打印的内容. 得到日志对象: //日志工厂需要将需要打印的类的类型传递进去,这样我们才知道日志的归属类,才能更方便的定位到文体类 private static Logger logger …

个人财务管理软件Money Pro mac功能特点

Money Pro mac是一款专为Mac用户设计的个人财务管理软件,具有全面的账户管理、智能的预算规划、强大的投资分析、丰富的报表和图表、安全的数据保护以及易于使用的界面设计等特点。 Money Pro mac功能和特点 全面的账户管理:支持多种账户类型&#xff0…

大数定律中心极限定理

1.切比雪夫不等式 切比雪夫不等式可以对随机变量偏离期望值的概率做出估计,这是大数定律的推理基础。以下介绍一个对切比雪夫不等式的直观证明。 1.1 示性函数 对于随机事件A,我们引入一个示性函数 I A { 1 , A发生 0 , A不发生 I_A\begin{cases} 1&…

FAST-LIO论文解析

题目:FAST-LIO:一种快速鲁棒的基于紧耦合迭代卡尔曼滤波的雷达-惯导里程计 摘要 本文提出了一种计算效率高、鲁棒性好的激光-惯性里程计框架。我们使用紧耦合的迭代扩展卡尔曼滤波器将LiDAR特征点与IMU数据融合在一起,从而在快速运动、嘈杂…

.NetCore NPOI 读取excel内容及单元格内图片

由于数据方提供的数据在excel文件中不止有文字内容还包含图片信息,于是编写相关测试代码,读取excel文件内容及图片信息. 本文使用的是 NPOI-2.6.2 版本,此版本持.Net4.7.2;.NetStandard2.0;.NetStandard2.1;.Net6.0。 测试文档内容&#xf…

IP地理位置定位技术基本原理

IP地理位置定位技术的基本原理是基于IP地址的特性。每个IP地址在网络中都有一个与之对应的地理位置信息,这是通过IP地址数据库来确定的。这个数据库由ISP(Internet Service Provider)或其它一些机构维护,其中包含了每个IP地址的地…

两向量叉乘值为对应平行四边形面积--公式推导

两向量叉乘值为对应平行四边形面积--公式推导 介绍 介绍

每日一题——LeetCode942

方法一 个人方法: 找规律,碰到I优先放最小的数,碰到D优先放最大的数,将0-n按照从小到大的顺序放入数组保存,碰到I就从数组前面取值,碰到D就从数组后面取值 var diStringMatch function(s) {var arr[],pe…

windows 安装multipass

安装说明 Multipass orchestrates virtual Ubuntu instances Launch an instance (by default you get the current Ubuntu LTS) multipass launch --name foo 下载 Multipass orchestrates virtual Ubuntu instances 安装 执行安装exe 前提 需要安装hyper-V 参考链接 …

【网络安全常用术语解读】SCAP详解

本文主要介绍什么是SCAP,SCAP的产生背景是怎样的,SCAP有什么用途,有哪些组件,各个组件的用途是什么? SCAP产生背景 由于计算机和网络技术的快速发展,越来越多的软件和系统被应用到企业和机构中&#xff0c…