学习动态规划解决不同路径、最小路径和、打家劫舍、打家劫舍iii

学习动态规划|不同路径、最小路径和、打家劫舍、打家劫舍iii

62 不同路径

在这里插入图片描述

  • 动态规划,dp[i][j]表示从左上角到(i,j)的路径数量
  • dp[i][j] = dp[i-1][j] + dp[i][j-1]

在这里插入图片描述

在这里插入图片描述

import java.util.Arrays;/*** 路径数量* 动态规划,dp[i][j]表示从左上角到(i,j)的路径数量* dp[i][j] = dp[i-1][j] + dp[i][j-1]*/
public class $62 {public int uniquePaths(int m, int n) {int[][] dp = new int[m][n];//边界for (int i = 0; i < m; i++) {dp[i][0] = 1;}for (int i = 0; i < n; i++) {dp[0][i] = 1;}for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}public int uniquePaths2(int m, int n) {int[] dp = new int[n];Arrays.fill(dp, 1);for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[j] += dp[j-1];}}return dp[n-1];}
}
import java.util.Arrays;/*** 路径数量* 动态规划,dp[i][j]表示从左上角到(i,j)的路径数量* dp[i][j] = dp[i-1][j] + dp[i][j-1]*/
public class $62 {public int uniquePaths2(int m, int n) {int[] dp = new int[n];Arrays.fill(dp, 1);for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[j] += dp[j-1];}}return dp[n-1];}
}

64 最小路径和

在这里插入图片描述

  • 动态规划,dp[i][j]表示从左上角到(i,j)的最小路径和
  • grid[i][j] = Math.min(grid[i-1][j], grid[i][j-1]) + grid[i][j]

在这里插入图片描述

/*** 最小路径和* grid[i][j] = Math.min(grid[i-1][j], grid[i][j-1]) + grid[i][j]*/
public class $64 {public int minPathSum(int[][] grid) {for (int i = 0; i < grid.length; i++) {for (int j = 0; j < grid[i].length; j++) {if (i==0 && j==0) continue;else if (i!=0 && j==0) grid[i][j] = grid[i-1][j] + grid[i][j];else if (i==0 && j!=0) grid[i][j] = grid[i][j-1] + grid[i][j];else grid[i][j] = Math.min(grid[i-1][j], grid[i][j-1]) + grid[i][j];}}return grid[grid.length-1][grid[0].length-1];}
}

198 打家劫舍

在这里插入图片描述

  • 动态规划,nums[i]表示前i间房屋能偷窃到的最高总金额
  • nums[i] = Math.max(nums[i-1], nums[i-2]+nums[i]);

在这里插入图片描述

/*** 打家劫舍* 动态规划,nums[i]表示前i间房屋能偷窃到的最高总金额* nums[i] = Math.max(nums[i-1], nums[i-2]+nums[i]);*/
public class $198 {public int rob(int[] nums) {//注意特殊值0,1if (nums == null || nums.length == 0) {return 0;}if (nums.length == 1) {return nums[0];}//nums[1]为nums[0]、nums[1]的最大值nums[1] = Math.max(nums[0], nums[1]);//从nums[2]开始for (int i = 2; i < nums.length; i++) {nums[i] = Math.max(nums[i-1], nums[i-2]+nums[i]);}return nums[nums.length-1];}
}

337 打家劫舍iii

在这里插入图片描述

  • 树形动态规划
  • 我们可以用 f(o)表示选择 o节点的情况下,o节点的子树上被选择的节点的最大权值和;
  • g(o)表示不选择 o节点的情况下,o节点的子树上被选择的节点的最大权值和;
  • l 和 r代表 o 的左右孩子。
  • 当 o 被选中时:o 的左右孩子都不能被选中,
  •  故 o 被选中情况下子树上被选中点的最大权值和为 l和 r不被选中的最大权值和 + o的值
    
  •  f(o)=g(l)+g(r)+o.val
    
  • 当 o不被选中时,o的左右孩子可以被选中,也可以不被选中。
  •  对于 o的某个具体的孩子 x,它对 o 的贡献是 x被选中和不被选中情况下权值和的较大值。
    
  •  g(o)=max{f(l),g(l)} + max{f(r),g(r)}
    

在这里插入图片描述

import java.util.HashMap;
import java.util.Map;/*** 打家劫舍iii* 树形动态规划* 我们可以用 f(o)表示选择 o节点的情况下,o节点的子树上被选择的节点的最大权值和;* g(o)表示不选择 o节点的情况下,o节点的子树上被选择的节点的最大权值和;* l 和 r代表 o 的左右孩子。** 当 o 被选中时:o 的左右孩子都不能被选中,*      故 o 被选中情况下子树上被选中点的最大权值和为 l和 r不被选中的最大权值和 + o的值*      f(o)=g(l)+g(r)+o.val* 当 o不被选中时,o的左右孩子可以被选中,也可以不被选中。*      对于 o的某个具体的孩子 x,它对 o 的贡献是 x被选中和不被选中情况下权值和的较大值。*      g(o)=max{f(l),g(l)} + max{f(r),g(r)}*/
public class $337 {Map<TreeNode, Integer> f = new HashMap<>();Map<TreeNode, Integer> g = new HashMap<>();public int rob(TreeNode root) {process(root);return Math.max(f.getOrDefault(root, 0), g.getOrDefault(root, 0));}private void process(TreeNode root) {if (root == null) {return;}process(root.left);process(root.right);f.put(root, root.val + g.getOrDefault(root.left, 0) + g.getOrDefault(root.right, 0));g.put(root, Math.max(f.getOrDefault(root.left, 0), g.getOrDefault(root.left, 0))+ Math.max(f.getOrDefault(root.right, 0), g.getOrDefault(root.right, 0)));}//法一的简化版public int rob2(TreeNode root) {int[] rootStatus = process2(root);return Math.max(rootStatus[0], rootStatus[1]);}private int[] process2(TreeNode root) {if (root == null) {return new int[]{0, 0};}int[] l = process2(root.left);int[] r = process2(root.right);int selected = root.val + l[1] + r[1];int notSelected = Math.max(l[0], l[1]) + Math.max(r[0], r[1]);return new int[]{selected, notSelected};}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/310619.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

迅软科技助力高科技防泄密:从华为事件中汲取经验教训

近期&#xff0c;涉及华为芯片技术被窃一事引起广泛关注。据报道&#xff0c;华为海思的两个高管张某、刘某离职后成立尊湃通讯&#xff0c;然后以支付高薪、股权支付等方式&#xff0c;诱导多名海思研发人员跳槽其公司&#xff0c;并指使这些人员在离职前通过摘抄、截屏等方式…

车牌识别系统设计与实现

车牌识别系统设计与实现 项目概述 本项目旨在设计和实现一套车牌识别系统&#xff0c;通过使用车牌字符数据集进行训练&#xff0c;应用OpenCV、CNN&#xff08;卷积神经网络&#xff09;和PyQt5技术&#xff0c;实现车牌图像的预处理、位置选定、定位、字符分割和最终的车牌…

【Matlab】CNN卷积神经网络时序预测算法

资源下载&#xff1a; https://download.csdn.net/download/vvoennvv/88681558 一&#xff0c;概述 CNN&#xff08;Convolutional Neural Network&#xff0c;卷积神经网络&#xff09;是一种前馈神经网络&#xff0c;主要用于处理具有类似网格结构的数据&#xff0c;例如图像…

24、Web攻防——通用漏洞SQL注入MYSQL跨库ACCESS偏移

文章目录 一、SQL注入原理   脚本代码在与数据库进行数据通讯时&#xff08;从数据库取出相关数据进行页面显示&#xff09;&#xff0c;使用预定义的SQL查询语句进行数据查询。能通过参数传递自定义值来实现SQL语句的控制&#xff0c;执行恶意的查询操作&#xff0c;例如查询…

大模型推理部署:LLM 七种推理服务框架总结

自从ChatGPT发布以来&#xff0c;国内外的开源大模型如雨后春笋般成长&#xff0c;但是对于很多企业和个人从头训练预训练模型不太现实&#xff0c;即使微调开源大模型也捉襟见肘&#xff0c;那么直接部署这些开源大模型服务于企业业务将会有很大的前景。 本文将介绍七中主流的…

【机器学习合集】深度生成模型 ->(个人学习记录笔记)

深度生成模型 深度生成模型基础 1. 监督学习与无监督学习 1.1 监督学习 定义 在真值标签Y的指导下&#xff0c;学习一个映射函数F&#xff0c;使得F(X)Y 判别模型 Discriminative Model&#xff0c;即判别式模型&#xff0c;又称为条件模型&#xff0c;或条件概率模型 生…

flex--伸缩性

1.flex-basis flex-basis 设置的是主轴方向的基准长度&#xff0c;会让宽度或高度失效。 备注&#xff1a;主轴横向&#xff1a;宽度失效&#xff1b;主轴纵向&#xff1a;高度失效 作用&#xff1a;浏览器根据这个属性设置的值&#xff0c;计算主轴上是否有多余空间&#x…

电表通讯协议DLT645-2007编程

1、协议 电表有个电力行业推荐标准《DLT645-2007多功能电能表通信协议》&#xff0c;电表都支持&#xff0c;通过该协议读取数据&#xff0c;不同的电表不需要考虑编码格式、数据地址、高低位转换等复杂情况&#xff0c;统一采集。 不方便的地方在于这个协议定义得有点小复杂…

4.33 构建onnx结构模型-Expand

前言 构建onnx方式通常有两种&#xff1a; 1、通过代码转换成onnx结构&#xff0c;比如pytorch —> onnx 2、通过onnx 自定义结点&#xff0c;图&#xff0c;生成onnx结构 本文主要是简单学习和使用两种不同onnx结构&#xff0c; 下面以 Expand 结点进行分析 方式 方法一…

基于电商场景的高并发RocketMQ实战-Consumer端队列负载均衡分配机制、并发消费以及消费进度提交

&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308; 【11来了】文章导读地址&#xff1a;点击查看文章导读&#xff01; &#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f3…

lv13 内核模块参数和依赖

1 模块传参 1.1 模块参数设置 将指定的全局变量设置成模块参数 module_param(name,type,perm);//将指定的全局变量设置成模块参数 /* name:全局变量名 type&#xff1a;使用符号 实际类型 传参方式bool bool insmod xxx.ko 变量名0 …

Kafka集群详解

Kafka介绍Kafka集群介绍Kafka集群特点Kafka集群搭建在这里插入图片描述Kafka集群如何进行故障切换Kafka集群Leader的选举Kafka集群如何快速横向拓展Kafka集群搭建最佳实践Kafka集群可以使用单节点Zookeeper吗Kafka集群的消费者信息保存在那里Kafka集群的Topic的分区数的设置规则…