【机器学习合集】深度生成模型 ->(个人学习记录笔记)

深度生成模型

深度生成模型基础

1. 监督学习与无监督学习

1.1 监督学习
定义
  • 在真值标签Y的指导下,学习一个映射函数F,使得F(X)=Y

在这里插入图片描述

判别模型
  • Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型

在这里插入图片描述

生成模型
  • Generative Model,即生成式模型

在这里插入图片描述

生成模型与判别模型的对比
  • 表达能力,灵活性,学习难度

生成模型和判别模型是深度学习中两种不同类型的模型,它们在任务和目标上有一些关键区别。以下是生成模型和判别模型的对比:

  1. 任务和目标:

    • 生成模型的目标是学习数据的分布,以便生成与训练数据类似的新样本。生成模型试图模拟数据的生成过程。

    • 判别模型的目标是对给定输入数据进行分类或标记。判别模型试图学习输入和输出之间的关联,通常用于分类、回归和检测等任务。

  2. 输出:

    • 生成模型的输出是一个概率分布,通常是条件概率分布,可以用于生成新的数据样本。典型的生成模型包括生成对抗网络(GANs)、变分自动编码器(VAEs)和隐马尔可夫模型(HMMs)。

    • 判别模型的输出是对输入数据的标签、类别或预测值。典型的判别模型包括卷积神经网络(CNNs)、循环神经网络(RNNs)和支持向量机(SVM)等。

  3. 数据需求:

    • 生成模型通常需要更多的数据来学习数据分布,因为它们需要模拟数据的生成过程,涉及到从数据中学习高维概率分布。

    • 判别模型通常需要相对较少的数据,因为它们只需要学习输入和输出之间的关联,而不需要考虑整个数据分布。

  4. 生成新数据:

    • 生成模型具有生成新数据样本的能力,因此它们可以用于图像生成、自然语言生成、音频合成等应用。

    • 判别模型通常不具备生成新数据的能力,它们更适合于分类和预测任务。

  5. 应用领域:

    • 生成模型在生成式任务中广泛应用,如图像生成、文本生成、语音合成等。它们也用于无监督学习、生成对抗网络中的对抗生成器等领域。

    • 判别模型在分类、目标检测、自然语言处理中的分类任务、情感分析等监督学习任务中得到广泛应用。

总的来说,生成模型和判别模型各自适用于不同的任务和应用领域。生成模型关注数据的生成过程和概率分布,判别模型关注输入和输出之间的关系。在实际应用中,选择合适的模型类型取决于任务的性质和数据的特点。有时也可以结合两种类型的模型以提高性能,例如生成模型用于数据增强,判别模型用于分类。

在这里插入图片描述

1.2 无监督学习
定义
  • 没有真值标签Y,学习数据的统计规律或潜在结构

在这里插入图片描述

2. 无监督生成模型

2.1 定义
  • 对输入数据X进行建模,得到概率分布

在这里插入图片描述

2.2 生成模型隐藏空间
  • 直接建模p,(X)非常困难,通过引入不可观测的隐藏变量z

在这里插入图片描述

2.3 无监督生成模型分类
  • 显式概率模型,隐式概率模型

在这里插入图片描述

  • 显式生成模型求解

在这里插入图片描述

  • 隐式密度模型求解

K-1703935797030)]

  • 显式生成模型求解

[外链图片转存中…(img-89LAyfOa-1703935797031)]

  • 隐式密度模型求解

在这里插入图片描述

注:部分内容来自阿里云天池

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/310610.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

flex--伸缩性

1.flex-basis flex-basis 设置的是主轴方向的基准长度,会让宽度或高度失效。 备注:主轴横向:宽度失效;主轴纵向:高度失效 作用:浏览器根据这个属性设置的值,计算主轴上是否有多余空间&#x…

电表通讯协议DLT645-2007编程

1、协议 电表有个电力行业推荐标准《DLT645-2007多功能电能表通信协议》,电表都支持,通过该协议读取数据,不同的电表不需要考虑编码格式、数据地址、高低位转换等复杂情况,统一采集。 不方便的地方在于这个协议定义得有点小复杂…

4.33 构建onnx结构模型-Expand

前言 构建onnx方式通常有两种: 1、通过代码转换成onnx结构,比如pytorch —> onnx 2、通过onnx 自定义结点,图,生成onnx结构 本文主要是简单学习和使用两种不同onnx结构, 下面以 Expand 结点进行分析 方式 方法一…

基于电商场景的高并发RocketMQ实战-Consumer端队列负载均衡分配机制、并发消费以及消费进度提交

🌈🌈🌈🌈🌈🌈🌈🌈 【11来了】文章导读地址:点击查看文章导读! 🍁🍁🍁🍁🍁🍁&#x1f3…

lv13 内核模块参数和依赖

1 模块传参 1.1 模块参数设置 将指定的全局变量设置成模块参数 module_param(name,type,perm);//将指定的全局变量设置成模块参数 /* name:全局变量名 type:使用符号 实际类型 传参方式bool bool insmod xxx.ko 变量名0 …

Kafka集群详解

Kafka介绍Kafka集群介绍Kafka集群特点Kafka集群搭建在这里插入图片描述Kafka集群如何进行故障切换Kafka集群Leader的选举Kafka集群如何快速横向拓展Kafka集群搭建最佳实践Kafka集群可以使用单节点Zookeeper吗Kafka集群的消费者信息保存在那里Kafka集群的Topic的分区数的设置规则…

区块链的三难困境是什么,如何解决?

人们需要保持社交、工作和睡眠之间的平衡,并且努力和谐相处。同样的概念也反映在区块链的三难困境中。 区块链三难困境是一个术语,指的是现有区块链的局限性:可扩展性、安全性和去中心化。这是一个存在了几十年的设计问题,其问题的…

使用SecoClient软件连接L2TP

secoclient软件是华为防火墙与友商设备进行微屁恩对接的一款软件,运行在windows下可以替代掉win系统自带的连接功能,因为win系统自带的连接功能总是不可用而且我照着网上查到的各种方法调试了很久都调不好,导致我一度怀疑是我的服务没搭建好,浪费了大把时间去研究其他搭建方案 …

鸿蒙 Window 环境的搭建

鸿蒙操作系统是国内自研的新一代的智能终端操作系统,支持多种终端设备部署,能够适配不同类别的硬件资源和功能需求。是一款面向万物互联的全场景分布式操作系统。 下载、安装与配置 DevEco Studio支持Windows系统和macOS系统 Windows系统配置华为官方推…

web网站的工作流程和开发模式

web网站的工作流程和开发模式 基于Java Script封装的高级技术:Vue、Element、Nginx(前端程序部署的服务器) 初识Web前端 Web标准

Cisco模拟器-企业网络部署

某企业园区网有:2个分厂(分别是:零件分厂、总装分厂)1个总厂网络中心 1个总厂会议室; (1)每个分厂有自己的路由器,均各有:1个楼宇分厂网络中心 每个楼宇均包含&#x…

数据库 范式

概念 一个低一级范式的关系模式通过模式分解可以转换成若干个高一级范式的关系集合,这种过程就叫规范化。 关系数据库中的关系是要满足一定要求的,满足不同程度要求的位不同范式。 部分依赖&完全依赖 定义:在关系 R(U) 中&#xff0c…