图像分割实战-系列教程2:Unet系列算法(Unet、Unet++、Unet+++、网络架构、损失计算方法)

图像分割实战-系列教程 总目录
语义分割与实例分割概述
Unet系列算法

1、Unet网络

1.1 概述

  • 整体结构:
  • 概述就是编码解码过程
  • 简单但是很实用,应用广
  • 起初是做医学方向,现在也是

虽然用的不是很多,在16年特别火,在医学领域、小目标领域做分割,其实到现在为止也还在用,因为在深度学习中网络越简单越好,这篇内容也会介绍Unet++版和Unet最新版

相比于yolo、maskrcnn、fastrcnn这些,Unet远比这些网络简单。网络越大的时候,感受野也越大,实际上就会更加适合一些大目标。

## 1.2 结构 如图的网络架构中,左边从上到下,仍然是一层一层卷积的过程,三层卷积一个block,这个过程也就是图像长宽减小、通道变多的过程。一直到最底下的一层,tensor维度从(572,572,1)变成了(28,28,1024),当然这个过程从代码中打印出来会比较清晰。
  • 第一个Block的输出会给到最后一个Block的输入和第二个Block的输入
  • 而第二个Block的输出会给到第三个Block的输入和倒数第二个Block的输入
  • 而同时最后一个Block会接受倒数第二个Block的输入和第一个Block的输入
  • 这种从上到下,从左到右的结构与以前的网络有所不同
  • 其中第一个Block和最后一个Block是一个对应的输入输出,对应的数据维度也是一样的,在当前这个网络中没有保持一样在后续新版本会保持一致

这整个过程相当于编码和解码的过程,整个网络呈现一个U字形,Unet在医学领域一直有不错的发挥

2、Unet各版本比较

2.1 Unet

在这里插入图片描述

  • 主要网络结构:
  • 还引入了特征拼接操作
  • 以前我们都是加法,现在全都要
  • 这么简单的结构就能把分割任务做好

2.2 U-net++概述

  • 整体网络结构:
  • 特征融合,拼接更全面
  • 其实跟densenet思想一致
  • 把能拼能凑的特征全用上就是升级版了
    在这里插入图片描述
    相比于Unet,++版本多做了一些融合的事情

2.3 U-net++损失计算方式

  • Deep Supervision :
  • 也是很常见的事,多输出
  • 损失由多个位置计算,再更新
  • 现在来看,很多视觉任务都可以套用这招

在这里插入图片描述
如图所示,第一层中 x 0 , 1 x^{0,1} x0,1 x 0 , 2 x^{0,2} x0,2 x 0 , 3 x^{0,3} x0,3 x 0 , 4 x^{0,4} x0,4等4个位置都参与了损失计算,由于很多位置都参与了损失计算可以再各个阶段都获取一个比较好的效果,使得最终的结果更好。

2.4 Unet++优点

  • 可以更容易剪枝:
  • 因为前面也单独有监督训练
  • 可以根据速度要求来快速完成剪枝
  • 训练的时候同样会用到L4,效果还不错
    在这里插入图片描述
    如图所示,原本是一个4层的网络,由于多个部分参与了损失计算,可以很方便的直接去掉最后一层看最后的结果,如果对速度要求发生变化,就可以尝试去掉第四层。

2.5 Unet+++

  • U-net+++(了解下就行)
  • 不同的max pool整合低阶特征
  • (X1和X2,轮廓之类的)
  • 上采样整合高阶特征
  • (感受野大的,全局的)
  • 各层统一用卷积得到64个特征图
  • 5*64=320,最终组合得到全部特征

在这里插入图片描述
这里看清楚了,是有3个+,其实这方面的论文有不少,4+和5+都有,实际上大同小异。

低阶特征(长宽大、特征图数少,如图 X E n 1 X^1_{En} XEn1 X E n 2 X^2_{En} XEn2)通过maxpooling降维,
高阶特征(长宽大、特征图数少,如图 X E n 4 X^4_{En} XEn4 X E n 5 X^5_{En} XEn5)通过线性插值增维,
统一变成nn64的维度,然后全部拼接在一起,这里就是nn645 = nn*320

图像分割实战-系列教程 总目录
语义分割与实例分割概述
Unet系列算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/310783.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【头歌实训】PySpark Streaming 入门

文章目录 第1关:SparkStreaming 基础 与 套接字流任务描述相关知识Spark Streaming 简介Python 与 Spark StreamingPython Spark Streaming APISpark Streaming 初体验(套接字流) 编程要求测试说明答案代码 第2关:文件流任务描述相…

JavaScript 工具库 | PrefixFree给CSS自动添加浏览器前缀

新版的CSS拥有多个新属性,而标准有没有统一,有的浏览器厂商为了吸引更多的开发者和用户,已经加入了最新的CSS属性支持,这其中包含了很多炫酷的功能,但是我们在使用的时候,不得不在属性前面添加这些浏览器的…

node.js express框架开发入门教程

文章目录 前言一、Express 生成器(express-generator)二、快速安装1.express框架express-generator生成器安装2.使用pug视图引擎创建项目,projectName 为项目名称自定义 三、安装热更新插件 nodemon四、目录结构1. public文件夹2.routes路由其他请求方式…

开源radishes高仿网易云音乐完整源码,可试听和下载“灰色”歌曲,跨平台的无版权音乐平台

源码介绍 Radishes是项目名称,是由萝卜翻译而来。可以在这里试听和下载“灰色”歌曲,是一个可以跨平台的无版权音乐平台。 萝卜音乐界面和功能参考 windows 网易云音乐界面和 ios 的网易云音乐 安装依赖 cd radishes/ yarn bootstrap 运行项目 web:…

【面试】 Maven 的八大核心概念

Maven 的八大核心概念 在这里,举出这个标题,自然大家知道Maven是干啥的,就不过多进行赘述!我们主要对于Maven的八大核心概念做一个解释补充,这也是我自己的一个学习历程,我们一起共勉! 文章概述…

数据按分组显示固定数量,如某tr中固定显示几个td。

效果图: 具体方法: /*** 一行展示N个数据,可补全数组,如最后一行只有3个,那么数组会补全到指定数量* param int $type 默认1,可扩展* param int $num 一行显示的个数,可设置* param $arrs二维数组* return…

微服务(10)

目录 46.k8s中镜像的下载策略是什么? 47.image的状态有哪些? 48.如何控制滚动更新过程? 49.DaemonSet资源对象的特性? 50.说说你对Job这种资源对象的了解? 46.k8s中镜像的下载策略是什么? 可通过命令k…

Python+OpenCV 零基础学习笔记(1-3):anaconda+vscode+jupyter环境配置

文章目录 前言相关链接环境配置:AnacondaPython配置OpenCVOpencv-contrib:Opencv扩展 Notebook:python代码笔记vscode配置配置AnacondaJupyter文件导出 前言 作为一个C# 上位机,我认为上位机的终点就是机器视觉运动控制。最近学了会Halcon发现机器视觉还…

模式识别与机器学习-无监督学习-聚类

无监督学习-聚类 监督学习&无监督学习K-meansK-means聚类的优点:K-means的局限性:解决方案: 高斯混合模型(Gaussian Mixture Models,GMM)多维高斯分布的概率密度函数:高斯混合模型&#xff…

Matlab figure窗口最大化 窗口全屏 图表窗口最大化

我有一个项目,需要把多个数据文件画成的曲线一个个保存为图片,然后再进行集中对比分析。程序运行后,打开目录下保存的图片,发现图片的尺寸都很小,画质也不清晰,后来发现原来matlab显示图片的时候&#xff0…

第三代半导体材料-碳化硅(SiC)详述

SiC产业概述 碳化硅(SiC)是第三代半导体材料的典型代表。 什么是半导体? 官话来说,半导体指常温下导电性能介于导体与绝缘体之间的材料。 但导电性能的强弱,并非是体现半导体材料价值的最直观属性,半导…

公司电脑文件防泄密|防止内部终端核心文件数据 \ 资料外泄

PC端访问地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 为了防止公司电脑文件泄密,可以采取以下措施: 文件加密:对重要文件进行加密是一种有效的防泄密方法。通过使用加密算法,…