OSPF的DR与BDR-新版(16)

     

目录

整体拓扑

操作步骤

1.基本配置

1.1 配置R1的IP

1.2 配置R2的IP

1.3 配置R3的IP

1.4 配置R4的IP

1.5 检测R1与R4连通性

1.6 检测R1与R2连通性

1.7 检测R1与R3连通性

2.搭建基本的OSPF网络

2.1 配置R1 OSPF

2.2 配置R2 OSPF

2.3 配置R3 OSPF

2.4 配置R4 OSPF

2.5 重启R1

2.6 重启R2

2.7 重启R3

2.8 重启R4

2.9 再次检查OSPF邻居建立情况

3. 查看缺省情况下的DR/BDR状态

3.1 查看R1 OSPF选举DR情况

3.2 修改R1 OSPF的网络类型

3.3 修改R2 OSPF的网络类型

3.4 修改R3 OSPF的网络类型

3.5 修改R4 OSPF的网络类型

3.6 再查看R1 OSPF选举DR情况

4.根据现网需求影响DR/BDR选举

4.1 配置R1网络类型

4.2 配置R2网络类型

4.3 配置R3网络类型

4.4 配置R4网络类型

4.5 修改R1接口优先级

4.6 修改R2接口优先级

4.7 查看R1路由器DR选举

4.8 修改R4接口优先级

4.9 重置后查看R1路由器DR选举

5.保存数据

5.1保存R1数据

5.2保存R2数据

5.3保存R3数据

5.4保存R4数据


    某公司有四个部门,路由器R1连接的总经理办公室,路由器R2连接到人事部,R3连接的是开发部,R4连接的是市场部。四台路由器通过交换机S1互联,每台路由器都运行了OSPF路由协议,都运行在区域0内,使得公司内部各部门网络能够互相通信。由于路由器通过广播网络互连,OSPF会选举DRBDR,现网络管理员要配置使得性能较好的R1成为DR,性能次之的R2成为BDR,而性能最差的R4不能参加DRBDR的选举,由此来完成网络的优化。

整体拓扑

操作步骤

1.基本配置

根据实验编址表进行相应的基本IP地址配置。

1.1 配置R1的IP

根据实验编址表配置路由器R1的接口IP地址。
<Huawei>system-view
[Huawei]sysname R1
[R1]interface Loopback 0
[R1-loopback0]ip address 1.1.1.1 32
[R1-loopback0]quit
[R1]interface GigabitEthernet0/0/0
[R1-GigabitEthernet0/0/0]ip address 172.16.1.1 24
[R1-GigabitEthernet0/0/0]quit

​​​​​​​system-view
sysname R1
interface Loopback 0
ip address 1.1.1.1 32
quit
interface GigabitEthernet0/0/0
ip address 172.16.1.1 24
quit

1.2 配置R2的IP

根据实验编址表配置路由器R2的接口IP地址。
<Huawei>system-view
[Huawei]sysname R2
[R2]interface Loopback 0
[R2-loopback0]ip address 2.2.2.2 32
[R2-loopback0]quit
[R2]interface GigabitEthernet0/0/0
[R2-GigabitEthernet0/0/0]ip address 172.16.1.2 24
[R2-GigabitEthernet0/0/0]quit

​​​​​​​system-view
sysname R2
interface Loopback 0
ip address 2.2.2.2 32
quit
interface GigabitEthernet0/0/0
ip address 172.16.1.2 24
quit

1.3 配置R3的IP

根据实验编址表配置路由器R3的接口IP地址。
<Huawei>system-view
[Huawei]sysname R3
[R3]interface Loopback 0
[R3-loopback0]ip address 3.3.3.3 32
[R3-loopback0]quit
[R3]interface GigabitEthernet0/0/0
[R3-GigabitEthernet0/0/0]ip address 172.16.1.3 24
[R3-GigabitEthernet0/0/0]quit

​​​​​​​system-view
sysname R3
interface Loopback 0
ip address 3.3.3.3 32
quit
interface GigabitEthernet0/0/0
ip address 172.16.1.3 24
quit

1.4 配置R4的IP

根据实验编址表配置路由器R4的接口IP地址,掩码长度为24
<Huawei>system-view
[Huawei]sysname R4
[R4]interface Loopback 0
[R4-loopback0]ip address 4.4.4.4 32
[R4-loopback0]quit
[R4]interface GigabitEthernet0/0/0
[R4-GigabitEthernet0/0/0]ip address 172.16.1.4 24
[R4-GigabitEthernet0/0/0]quit

​​​​​​​system-view
sysname R4
interface Loopback 0
ip address 4.4.4.4 32
quit
interface GigabitEthernet0/0/0
ip address 172.16.1.4 24
quit

1.5 检测R1R4连通性

并使用ping命令检测R1直连链路的连通性。
<R1>ping 172.16.1.4

ping 172.16.1.4

1.6 检测R1R2连通性

<R1>ping 172.16.1.2

ping 172.16.1.2

1.7 检测R1R3连通性

<R1>ping 172.16.1.3
测试完成,通信正常。

ping 172.16.1.3

2.搭建基本的OSPF网络

在公司网络中的四台路由器R1R2R3R4上配置基础的OSPF网络配置。每台路由器使用各自的环回接口地址作为Router-ID,并且都运行在区域0内。

2.1 配置R1 OSPF

R1的基础OSPF配置。
<R1>system-view
[R1]router id 1.1.1.1
[R1]ospf 1
[R1-ospf-1]area 0
[R1-ospf-1-area-0.0.0.0]network 172.16.1.0 0.0.0.255

​​​​​​​system-view
router id 1.1.1.1
ospf 1
area 0
network 172.16.1.0 0.0.0.255

2.2 配置R2 OSPF

R2的基础OSPF配置。
<R2>system-view
[R2]router id 2.2.2.2
[R2]ospf 1
[R2-ospf-1]area 0
[R2-ospf-1-area-0.0.0.0]network 172.16.1.0 0.0.0.255

​​​​​​​system-view
router id 2.2.2.2
ospf 1
area 0
network 172.16.1.0 0.0.0.255

2.3 配置R3 OSPF

R3的基础OSPF配置。
<R3>system-view
[R3]router id 3.3.3.3
[R3]ospf 1
[R3-ospf-1]area 0
[R3-ospf-1-area-0.0.0.0]network 172.16.1.0 0.0.0.255

​​​​​​​system-view
router id 3.3.3.3
ospf 1
area 0
network 172.16.1.0 0.0.0.255

2.4 配置R4 OSPF

R4的基础OSPF配置。
<R4>system-view
[R4]router id 4.4.4.4
[R4]ospf 1
[R4-ospf-1]area 0
[R4-ospf-1-area-0.0.0.0]network 172.16.1.0 0.0.0.255

配置完成后,同时重启四台路由器上的OSPF进程,或者直接同时重启设备。

system-view
router id 4.4.4.4
ospf 1
area 0
network 172.16.1.0 0.0.0.255

2.5 重启R1

重启R1OSPF进程。输入命令点击Enter后输入’y’进行确认。
<R1>reset ospf process

return
reset ospf process

2.6 重启R2

重启R2OSPF进程。输入命令点击Enter后输入’y’进行确认。
<R2>reset ospf process

​​​​​​​return
reset ospf process

2.7 重启R3

重启R3OSPF进程。输入命令点击Enter后输入’y’进行确认。
<R3>reset ospf process

​​​​​​​return
reset ospf process

2.8 重启R4

重启R4OSPF进程。输入命令点击Enter后输入’y’进行确认。
<R4>reset ospf process

return
reset ospf process

2.9 再次检查OSPF邻居建立情况

重置后再次检查OSPF邻居建立情况。使用命令display ospf peer brief进行查看。
<R1>display ospf peer brief
可以观察到,R1此时已经和其他路由器成功建立起OSPF邻居关系。其他设备上的查看省略。

display ospf peer brief

3. 查看缺省情况下的DR/BDR状态

3.1 查看R1 OSPF选举DR情况

使用display ospf peer命令查看此时缺省情况下OSPF网络中的DR/BDR选举情况。
[R1]display ospf peer
可以观察到在该广播网络中,此时R4OSPF网络中的DRR3BDR。这是由于在缺省情况下,每台路由器上的DR优先级都为1,此时通过Router-ID的数值高低进行比较。

display ospf peer

3.2 修改R1 OSPF的网络类型

在R1上的相关接口下使用命令ospf network-type p2mp修改OSPF的网络类型为点到多点。
<R1>system-view
[R1]interface GigabitEthernet 0/0/0
[R1-GigabitEthernet0/0/0]ospf network-type p2mp

​​​​​​​system-view
interface GigabitEthernet 0/0/0
ospf network-type p2mp

3.3 修改R2 OSPF的网络类型

在R2上的相关接口下使用命令ospf network-type p2mp修改OSPF的网络类型为点到多点。
<R2>system-view
[R2]interface GigabitEthernet 0/0/0
[R2-GigabitEthernet0/0/0]ospf network-type p2mp

​​​​​​​system-view
interface GigabitEthernet 0/0/0
ospf network-type p2mp

3.4 修改R3 OSPF的网络类型

在R3上的相关接口下使用命令ospf network-type p2mp修改OSPF的网络类型为点到多点。
<R3>system-view
[R3]interface GigabitEthernet 0/0/0
[R3-GigabitEthernet0/0/0]ospf network-type p2mp

​​​​​​​system-view
interface GigabitEthernet 0/0/0
ospf network-type p2mp

3.5 修改R4 OSPF的网络类型

在R4上的相关接口下使用命令ospf network-type p2mp修改OSPF的网络类型为点到多点。
<R4>system-view
[R4]interface GigabitEthernet 0/0/0
[R4-GigabitEthernet0/0/0]ospf network-type p2mp

system-view
interface GigabitEthernet 0/0/0
ospf network-type p2mp

3.6 再查看R1 OSPF选举DR情况

配置完成后,在R1上再次观察此时OSPFDR/BDR选举情况。
[R1]display ospf peer
可以观察到,DR/BDR都为None,验证了在点到多点的网络类型中不选举DR/BDR,同样在点到点网络中也是,这里不再赘述。

display ospf peer

4.根据现网需求影响DR/BDR选举

现在根据需求,网络管理员要使得性能较好,处理能力较强的R1成为DR,性能次之的R2成为BDR,而性能最差的R4不能参加DRBDR的选举,由此来完成网络的优化。

4.1 配置R1网络类型

将R1OSPF网络类型还原为默认的广播网络类型。
<R1>system-view
[R1]interface GigabitEthernet 0/0/0
[R1-GigabitEthernet0/0/0]ospf network-type broadcast

​​​​​​​return
system-view
interface GigabitEthernet 0/0/0
ospf network-type broadcast

4.2 配置R2网络类型

将R2OSPF网络类型还原为默认的广播网络类型。
<R2>system-view
[R2]interface GigabitEthernet 0/0/0
[R2-GigabitEthernet0/0/0]ospf network-type broadcast

​​​​​​​return
system-view
interface GigabitEthernet 0/0/0
ospf network-type broadcast

4.3 配置R3网络类型

将R3OSPF网络类型还原为默认的广播网络类型。
<R3>system-view
[R3]interface GigabitEthernet 0/0/0
[R3-GigabitEthernet0/0/0]ospf network-type broadcast

​​​​​​​return
system-view
interface GigabitEthernet 0/0/0
ospf network-type broadcast

4.4 配置R4网络类型

将R4OSPF网络类型还原为默认的广播网络类型。
<R4>system-view
[R4]interface GigabitEthernet 0/0/0
[R4-GigabitEthernet0/0/0]ospf network-type broadcast

​​​​​​​return
system-view
interface GigabitEthernet 0/0/0
ospf network-type broadcast

4.5 修改R1接口优先级

配置完成后,修改R1GE 0/0/0接口的DR优先级为100
<R1>system-view
[R1]interface GigabitEthernet 0/0/0
[R1-GigabitEthernet0/0/0]ospf dr-priority 100

​​​​​​​return
system-view
interface GigabitEthernet 0/0/0
ospf dr-priority 100

4.6 修改R2接口优先级

配置完成后,修改R2GE 0/0/0接口的DR优先级为50
<R2>system-view
[R2]interface GigabitEthernet 0/0/0
[R2-GigabitEthernet0/0/0]ospf dr-priority 50

​​​​​​​return
system-view
interface GigabitEthernet 0/0/0
ospf dr-priority 50

4.7 查看R1路由器DR选举

配置完成后,查看R1路由器的DR/BDR选举情况。
[R1]display ospf peer
发现此时的DRBDR都没有改变,即验证了OSPFDR/BDR选举是非抢占的。必须要在四台路由器上同时重启OSPF进程,或者重启路由器才能使得其重新正确选举。
同时重启四台路由器的OSPF进程,或直接同时重启设备。

display ospf peer

4.8 修改R4接口优先级

配置完成后,修改R4GE 0/0/0接口的DR优先级为0R3保持缺省不变。DR优先级为0时,表示不参与DRBDR的选举。
<R4>system-view
[R4]interface GigabitEthernet 0/0/0
[R4-GigabitEthernet0/0/0]ospf dr-priority 0

​​​​​​​return
system-view
interface GigabitEthernet 0/0/0
ospf dr-priority 0

4.9 重置后查看R1路由器DR选举

使用reset ospf process命令重置所有设备的OSPF进程后,再次查看各路由器的DR/BDR选举状态。重置进程命令参考上述步骤。
<R1>display ospf peer
此时发现在该广播网络中,R1DRR2BDR,实现了网络的需求。

​​​​​​​return
display ospf peer

5.保存数据

5.1保存R1数据

在R1上保存数据。
<R1>save

save

5.2保存R2数据

在R2上保存数据。
<R2>save

save

5.3保存R3数据

在R3上保存数据。
<R3>save

save

5.4保存R4数据

在R4上保存数据。
<R4>save

save

思考

在本实验步骤二中,基础的OSPF网络配置完毕后,为什么要同时重启下四台路由器上的OSPF进程?         

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/310827.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python+OpenGL绘制3D模型(九)完善插件功能: 矩阵,材质,法线

系列文章 一、逆向工程 Sketchup 逆向工程&#xff08;一&#xff09;破解.skp文件数据结构 Sketchup 逆向工程&#xff08;二&#xff09;分析三维模型数据结构 Sketchup 逆向工程&#xff08;三&#xff09;软件逆向工程从何处入手 Sketchup 逆向工程&#xff08;四&#xf…

免费的云服务器推荐~三丰云

对于许多初创企业和小型公司来说&#xff0c;寻找一个经济实惠且可靠的云服务提供商是至关重要的。在这方面&#xff0c;三丰云以其免费虚拟主机和云服务器吸引了大量用户。 1. 注册与界面 注册三丰云的账户过程简单明了&#xff0c;只需按照步骤填写必要信息即可。其界面设计…

C语言中灵活多变的动态内存,malloc函数 free函数 calloc函数 realloc函数

文章目录 &#x1f680;前言&#x1f680;管理动态内存的函数✈️malloc函数✈️free函数✈️calloc函数✈️realloc函数 &#x1f680;在使用动态内存函数时的常见错误✈️对NULL指针的解引用✈️ 对动态开辟空间的越界访问✈️对非动态开辟内存使用free释放✈️使用free释放一…

力扣:62. 不同路径(动态规划,附python二维数组的定义)

题目&#xff1a; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&…

计算机组成原理复习5

总线结构与控制 文章目录 总线结构与控制总线结构单总线结构双总线结构三总线结构四总线结构 总线控制判优控制&#xff08;仲裁逻辑&#xff09;链式查询方式计数器定时查询独立请求方式 通信控制同步通信异步通信两种传输率的异步串行传送字符格式 总线结构 单总线结构 单总…

2023年03月20日_对李开复3月20日线下媒体会的解读

最近这个AI大模型 因为GPT4.0 ChatGPT 文心一言等等这些事情呢 一下子就被推到了风口浪尖 我们也做了来介绍相关的进展 国内呢也不断有一些大佬开始下场 包括王慧文、张朝阳、李彦宏什么的 都开始说自己要搞AI大模型 就在昨天呢 创新工厂的董事长兼CEO李开复 也发朋友…

MATLAB | 一起来绘制一款元旦特别款烟花叭~

新的一年就要到了&#xff0c;祝大家元旦快乐&#xff0c;新的一年里顺风顺水顺财神&#xff0c;文章投的都中&#xff0c;奖金基金kuku申请成功&#xff0c;今天带来一款完成度比较高的烟花代码&#xff0c;带字幕特效&#xff0c;为新的一年接风洗尘~&#xff1a; 文字都是可…

微软推出iOS 版Copilot App 让你免费用GPT-4

微软几天前在Android 平台推出独立的Copilot App 后&#xff0c;很快地又推出了适用于iOS 和iPad 本版的Copilot App&#xff0c;现在已经于苹果的App Store 上架&#xff0c;让iPhone 和iPad 使用者也能快速接触到这款人工智慧助手&#xff0c;通过输入查询来获得由OpenAI 的G…

[LLM]大模型训练(三)--DeepSpeed-Train

安装DeepSpeed与集成 pip install deepspeed DeepSpeed与HuggingFace Transformers直接集成。使用者可以通过在模型训练命令中加入简单的 --deepspeed 标志和配置文件&#xff0c;来轻松加速模型训练。 编写DeepSpeed模型 DeepSpeed模型训练的核心是什么&#xff1f;它如何处…

B+树的插入删除

操作 插入 case2的原理,非叶子节点永远和最右边的最左边的节点的值相等。 case3:的基本原理 非叶子节点都是索引节点 底层的数据分裂之后 相当于向上方插入一个新的索引(你可以认为非叶子节点都是索引),反正第二层插入160 都要分裂,然后也需要再插入(因为索引部分不需要重…

【设计模式】状态模式

文章目录 引例状态模式理论状态模式代码优化结合享元模式并发问题解决 策略模式 VS 状态模式 引例 交通信号灯系统的设计与实现 方案一 传统设计方案 定义交通灯颜色的枚举 public enum LightColor { Green,Red,Yellow }交通灯类TrafficLight&#xff0c;处理颜色转换等业务…