2022.07.25 C++下使用opencv部署yolov7模型(五)

0.写在最前

此篇文字针对yolov7-1.0版本。

最近粗略的看了一遍yolov7的论文,关于yolov7和其他yolo系列的对比,咱就不多说了,大佬们的文章很多很详细。关于opencv部署方面,其实yolov7和yolov5的初期版本(5.0以前的版本)很像,分为三个输出口,yolov5-6.0之后的版本合并了三个输出口变成一个output输出【需要注意的是,虽然yolov可以在export的时候加上--grid参数将detect层加入之后变成和yolov5最新版本的输出一致(可以不用改yolov5代码直接跑yolov7的那种一致,当然,anchors数据还是得改的),但是我试过了,opencv包括onnxruntime推理加grid参数的onnx模型都有问题,暂时我也在探索一种适用于所有yolov7版本的修改方案,但是改了几种都是适用某几个模型,其他模型挂掉的情况】。使用Netron打开两个模型对比下很明显,数据格式也和yolo的一致。所以基本上可以和yolov5的代码通用。只不过具体使用的时候还是有一点区别的。另外,yolov7目前可以直接通过其自身带的export.py导出onnx模型,并不需要像yolov5早期的代码修改。

一.yolov5代码修改适用yolov7

1.归一化框的读取类似yolov5的早期版本

上面说过,yolov7和yolov5的不同,实际上应该是一致的才对(实际上,如果yolov7导出的时候加上--grid参数,结果就和yolov5目前的版本一毛一样,但是加上之后opencv推理onnx的时候会报错,目前yolov7暂时未修复该bug,所以下面的yolov7代码导出的时候不要加--grid参数)。我没仔细debug,所以我们需要根据下面的红色框中的内容对网络的归一化anchors框进行变换变成正常的像素位置。也就是像yolov5之前古老的版本没优化之前一样(这就是我上面说的和yolov5-5.0以前的版本类似的原因)。可以看第三篇的代码中的读取归一化框的方式获取原始图像位置。2021.09.02更新说明 c++下使用opencv部署yolov5模型 (三)_爱晚乏客游的博客-CSDN博客_c++ yolov5

2.anchors数据不同

 对比下两者的anchors数据,可以看到两个的anchors不一致了,修改这部分内容即可。

所以综上所诉,对于yolov5-6.0的代码,修改一些地方即可马上应用到yolov7上面,可以说很方便了。

具体修改有两处,一处是anchors,另外一处是推理程序,修改之后的链接我放最下面了,其实就是在第四篇的基础上面修改下:GitHub - UNeedCryDear/yolov5-opencv-dnn-cpp: 使用opencv模块部署yolov5-6.0版本 

//yolo.h中改下anchors
const float netAnchors[3][6] = { {12, 16, 19, 36, 40, 28},{36, 75, 76, 55, 72, 146},{142, 110, 192, 243, 459, 401} }; //yolov7-P5 anchors//yolo.cpp中推理代码修改
bool Yolo::Detect(Mat& SrcImg, Net& net, vector<Output>& output) {Mat blob;int col = SrcImg.cols;int row = SrcImg.rows;int maxLen = MAX(col, row);Mat netInputImg = SrcImg.clone();if (maxLen > 1.2 * col || maxLen > 1.2 * row) {Mat resizeImg = Mat::zeros(maxLen, maxLen, CV_8UC3);SrcImg.copyTo(resizeImg(Rect(0, 0, col, row)));netInputImg = resizeImg;}vector<Ptr<Layer> > layer;vector<string> layer_names;layer_names= net.getLayerNames();blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0, 0), true, false);//如果在其他设置没有问题的情况下但是结果偏差很大,可以尝试下用下面两句语句//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(104, 117, 123), true, false);//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(114, 114,114), true, false);net.setInput(blob);std::vector<cv::Mat> netOutputImg;net.forward(netOutputImg, net.getUnconnectedOutLayersNames());std::vector<int> classIds;//结果id数组std::vector<float> confidences;//结果每个id对应置信度数组std::vector<cv::Rect> boxes;//每个id矩形框float ratio_h = (float)netInputImg.rows / netHeight;float ratio_w = (float)netInputImg.cols / netWidth;int net_width = className.size() + 5;  //输出的网络宽度是类别数+5for (int stride = 0; stride < strideSize; stride++) {    //stridefloat* pdata = (float*)netOutputImg[stride].data;int grid_x = (int)(netWidth / netStride[stride]);int grid_y = (int)(netHeight / netStride[stride]);for (int anchor = 0; anchor < 3; anchor++) {	//anchorsconst float anchor_w = netAnchors[stride][anchor * 2];const float anchor_h = netAnchors[stride][anchor * 2 + 1];for (int i = 0; i < grid_y; i++) {for (int j = 0; j < grid_x; j++) {float box_score = sigmoid_x(pdata[4]); ;//获取每一行的box框中含有某个物体的概率if (box_score >= boxThreshold) {cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);Point classIdPoint;double max_class_socre;minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);max_class_socre = sigmoid_x(max_class_socre);if (max_class_socre >= classThreshold) {float x = (sigmoid_x(pdata[0]) * 2.f - 0.5f + j) * netStride[stride];  //xfloat y = (sigmoid_x(pdata[1]) * 2.f - 0.5f + i) * netStride[stride];   //yfloat w = powf(sigmoid_x(pdata[2]) * 2.f, 2.f) * anchor_w;   //wfloat h = powf(sigmoid_x(pdata[3]) * 2.f, 2.f) * anchor_h;  //hint left = (int)(x - 0.5 * w) * ratio_w + 0.5;int top = (int)(y - 0.5 * h) * ratio_h + 0.5;classIds.push_back(classIdPoint.x);confidences.push_back(max_class_socre * box_score);boxes.push_back(Rect(left, top, int(w * ratio_w), int(h * ratio_h)));}}pdata += net_width;//下一行}}}}//执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)vector<int> nms_result;NMSBoxes(boxes, confidences, nmsScoreThreshold, nmsThreshold, nms_result);for (int i = 0; i < nms_result.size(); i++) {int idx = nms_result[i];Output result;result.id = classIds[idx];result.confidence = confidences[idx];result.box = boxes[idx];output.push_back(result);}if (output.size())return true;elsereturn false;
}

二、yolov7一些模型转换的问题

评论区有些小伙伴反馈yolov7-d6模型在opencv4.5.1下面会报错,报错信息类似之前读取早期的yolov5的报错一致。

OpenCV(4.5.0) Error: Unspecified error (> Node [Slice]:(341) parse error: OpenCV(4.5.0) D:\opencv\ocv4.5.0\sources\modules\dnn\src\onnx\onnx_importer.cpp:697: error: (-2:Unspecified error) in function 'void __cdecl cv::dnn::dnn4_v20200908::ONNXImporter::handleNode(const class opencv_onnx::NodeProto &)' Slice layer only supports steps = 1 (expected: 'countNonZero(step_blob != 1) == 0'), where 'countNonZero(step_blob != 1)' is 1 must be equal to '0' is 0 in cv::dnn::dnn4_v20200908::ONNXImporter::handleNode, file D:\opencv\ocv4.5.0\sources\modules\dnn\src\onnx\onnx_importer.cpp, line 1797

经过对比yolov7和yolov7-d6的yaml文件,发现是由于yolov7-d6中使用了ReOrg模块引起的报错,也就是步长为2的切片,像我这个系列中第一篇的问题一样。

这个模块有点类似早期的yolov5的Facos模块,需要将ReOrg模块修改成下面的代码。 在models/common.py里面搜索下ReOrg,改成一下代码之后重新导出onnx模型即可正确读取。

class ReOrg(nn.Module):def __init__(self):super(ReOrg, self).__init__()def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)#origin code# return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)self.concat=Contract(gain=2)return self.concat(x)

最后贴个yolov7和yolov5的对比图,可以看到yolov7提升还是蛮明显的,结果的置信度高了一些,后面的自行车也检测出来了,就是领带这里误检了。 

 

贴合github链接,里面包括了yolov7和yolov5,通过宏定义来控制:

GitHub - UNeedCryDear/yolov7-opencv-dnn-cpp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/311336.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多维时序 | MATLAB实现SSA-CNN-GRU-SAM-Attention麻雀算法优化卷积网络结合门控循环单元网络融合空间注意力机制多变量时间序列预测

多维时序 | MATLAB实现SSA-CNN-GRU-SAM-Attention麻雀算法优化卷积网络结合门控循环单元网络融合空间注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-CNN-GRU-SAM-Attention麻雀算法优化卷积网络结合门控循环单元网络融合空间注意力机制多变量时间序列预测预测效…

费曼学习法应用:谈自私和教育的引导

今天这个还是来源于我和九迁的对话&#xff0c;起因是中午吃饭的时候&#xff0c;九迁在学校与班主任老师和数学老师对话中带来的思考。 先听音频&#xff1a; 对话内容&#xff08;以下内容可以边听边看&#xff0c;属于语音转换过来的文字&#xff0c;最后有个总结&#xff0…

【Java进阶篇】SimpleDateFormat是线程安全的吗? 使用时应该注意什么?

SimpleDateFormat是线程安全的吗?使用时应该注意什么? ✔️ 典型解析✔️拓展知识仓✔️SimpleDateFormat用法✔️日期和时间模式表达方法✔️输出不同时区的时间✔️SimpleDateFormat线程安全性✔️问题重现✔️线程不安全原因✔️如何解决✔️使用局部变量✔️加同步锁✔️…

HTML标签基础入门

HTML 基本语法概述标签关系HTML基础结构HTML常用标签标题标签示例 段落和换行标签示例 文本格式化标签示例 div和span标签示例 图像标签和路径示例 超链接标签示例 注释 ctrl/特殊字符示例 表格标签 表头单元格标签表格属性示例 合并单元格示例 列表标签无序列表有序列表自定义…

GRNdb:解码不同人类和小鼠条件下的基因调控网络

GRNdb&#xff1a;解码不同人类和小鼠条件下的基因调控网络 摘要introduction数据收集和处理Single-cell and bulk RNA-seq data collection and processing 单细胞和bulk RNA-seq 数据收集和处理Cell cluster identification for scRNA-seq datasets &#xff08;scRNA-seq 数…

Docker之镜像上传和下载

目录 1.镜像上传 1) 先上百度搜索阿里云 点击以下图片网站 2) 进行登录/注册 3) 使用支付宝...登录 4) 登录后会跳转到首页->点击控制台 5) 点击左上角的三横杠 6) 搜索容器镜像关键词->点击箭头所指 ​ 编辑 7) 进入之后点击实例列表 8) 点击个人实例进入我们的一个…

软件测试/测试开发丨Linux进阶命令(curl、jq)

1、 curl 接口请求 curl是一个发起请求数据给服务器的工具curl支持的协议FTP、FTPS、HTTP、HTTPS、TFTP、SFTP、Gopher、SCP、Telnet、DICT、FILE、LDAP、LDAPS、IMAP、POP3、SMTP和RTSPcurl是一个非交互的工具 2、 curl 发起 get 请求 -G&#xff1a;使用get请求-d&#xf…

我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充

图像处理四&#xff08;轮廓查找&#xff09; 一、前言1.1 边缘检测和轮廓查找的区别是什么1.1.1 边缘检测&#xff1a;1.1.2 轮廓查找&#xff1a; 1.2 边缘检测和轮廓查找在图像处理中的关系和流程 二、查找并绘制轮廓2.1 cv2.findContours()&#xff1a;2.1.1 详细介绍&…

Unity Shader UVLightReveal (紫外线显示,验钞效果)

Unity Shader UVLightReveal &#xff08;紫外线显示&#xff0c;验钞效果&#xff09; UVLight Reveal 实现验钞机的效果实现方案操作实现1.Light2.将另一个图形加入3.加上图形效果4.加上灯光的颜色自定义判定 源码 UVLight Reveal 实现验钞机的效果 大家应该都有见过验钞机验…

ARM12.25

串口发送控制命令&#xff0c;实现一些外设LED 风扇 马达 运转 下实现灯亮 uart4.h #ifndef __UART4_H__ #define __UART4_H__ #include"stm32mp1xx_rcc.h" #include"stm32mp1xx_gpio.h" #include"stm32mp1xx_uart.h" void uart4_config(); v…

elasticsearch列一:索引模板的使用

概述 近期一直在负责es这块&#xff0c;就想着和大家分享一些使用经验&#xff0c;我们从存储、查询、优化、备份、运维等几个方面来做分享。今天咱们先看下如何更加合理的存储数据。 初见索引模板 记得刚接触es还是18年那会&#xff0c;项目上线后因一些原因导致日志这部分的…

java servlet软件缺陷库管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java servlet软件缺陷库管理系统是一套完善的java web信息管理系统 系统采用serlvetdaobean&#xff08;mvc模式)&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOM…