OFDM——PAPR减小

文章目录

  • 前言
  • 一、PAPR 减小
  • 二、MATLAB 仿真
    • 1、OFDM 信号的 CCDF
      • ①、MATLAB 源码
      • ②、仿真结果
    • 2、单载波基带/通频带信号的 PAPR
      • ①、MATLAB 源码
      • ②、仿真结果
    • 3、时域 OFDM 信号和幅度分布
      • ①、MATLAB 源码
      • ②、仿真结果
    • 4、Chu 序列和 IEEE802.16e 前导的 PAPR
      • ①、MATLAB 源码
      • ②、仿真结果
        • 1) Chu 序列经 IFFT 之后的幅度
        • 2) IEEE 802.16e 前导的 PAPR
    • 5、基于限幅和滤波的 OFDM 信号
      • ①、MATLAB 源码
      • ②、仿真结果
        • 1)基带信号及通频带信号功率谱、PDF、功率
        • 2)限幅信号、滤波信号的 PDF 和功率谱
        • 3)等波纹通频带 FIR 滤波器的特点
    • 6、采用限幅和滤波后的 PAPR 分布和 BER 性能
    • 7、部分传输序列(PTS)
    • 8、DFT 扩频
    • 9、采用脉冲成型的 DFT 扩频的 PAPR 分析
  • 三、资源自取


前言

本文对减小 OFDM 峰值平均功率比(PAPR—Peak to Average Power Ratio)的内容以思维导图的形式呈现,有关仿真部分进行了讲解实现。


一、PAPR 减小

减小 OFDM 峰值平均功率比思维导图如下图所示,如有需求请到文章末尾端自取。
在这里插入图片描述

二、MATLAB 仿真

1、OFDM 信号的 CCDF

互补累积分布函数(CCDF,CF超过Z的概率):
在这里插入图片描述
简化了的 累积分布函数(CDF,CF未超过Z的概率):
在这里插入图片描述
在这里插入图片描述

①、MATLAB 源码

mapper.m

function [modulated_symbols,Mod] = mapper(b,N)
% If N is given, it generates a block of N random 2^b-PSK/QAM modulated symbols.
% Otherwise, it generates a block of 2^b-PSK/QAM modulated symbols for [0:2^b-1].%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte LtdM=2^b; % Modulation order or Alphabet (Symbol) size
if b==1, Mod='BPSK'; A=1; mod_object=comm.PSKModulator('ModulationOrder', M);elseif b==2, Mod='QPSK';  A=1;mod_object = comm.PSKModulator('ModulationOrder', M, 'PhaseOffset', pi/4);else Mod=[num2str(2^b) 'QAM']; Es=1; A=sqrt(3/2/(M-1)*Es); mod_object = comm.RectangularQAMModulator('ModulationOrder', M, 'SymbolMapping', 'Gray');
end
if nargin==2 % generates a block of N random 2^b-PSK/QAM modulated symbols modulated_symbols = A * mod_object(randi([0 M-1], N, 1));elsemodulated_symbols = A * mod_object((0:M-1)');
end

PAPR.m

function [PAPR_dB, AvgP_dB, PeakP_dB] = PAPR(x)
% PAPR_dB  : PAPR[dB]
% AvgP_dB  : Average power[dB]
% PeakP_dB : Maximum power[dB]%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte LtdNx=length(x); xI=real(x); xQ=imag(x);
Power = xI.*xI + xQ.*xQ;
PeakP = max(Power); PeakP_dB = 10*log10(PeakP);
AvgP = sum(Power)/Nx; AvgP_dB = 10*log10(AvgP);
PAPR_dB = 10*log10(PeakP/AvgP);

plot_CCDF.m

% plot_CCDF.m
% Plot the CCDF curves of Fig. 7.3.
clear all; clc; clf
Ns = 2.^[6:10];     % OFDM系统中的子载波数量
b=2;                % 指定每个符号的比特数
M=2^b;              % 根据 b 计算调制阶数
Nblk = 1e3;         % 设置仿真的块数
%mod_object = modem.qammod('M',M, 'SymbolOrder','gray');
%Es=1; A=sqrt(3/2/(M-1)*Es); 
zdBs = [4:0.1:10];
N_zdBs = length(zdBs);
%Ray_fnc = inline('z/s2*exp(-z^2/(2*s2))','s2','z');
CCDF_formula=inline('1-((1-exp(-z.^2/(2*s2))).^N)','N','s2','z'); % Eq.(7.9)    % 代码使用内联函数 inline 定义了函数 CCDF_formula
for n = 1:length(Ns)    % 循环遍历 Ns 中的值N=Ns(n);            % 设置当前的子载波数量x = zeros(Nblk,N);  % 初始化一个数组 x,用于存储OFDM时域信号sqN=sqrt(N);        % 计算 N 的平方根for k = 1:Nblk      % 进行 OFDM 块的仿真%msgint=randint(1,N,M); X=A*modulate(mod_object,msgint);X = mapper(b,N); % 使用 QPSK 调制方案生成 N 个调制符号x(k,:) = ifft(X,N)*sqN;  % 对 X 执行逆快速傅里叶变换(IFFT),并乘以 sqN 进行能量归一化CFx(k) = PAPR(x(k,:));   % 计算时域信号 x 的峰均比(PAPR)ends2 = mean(mean(abs(x)))^2/(pi/2);   % 计算时域信号 x 的平均功率以估计方差 s2。%  使用 CCDF_formula 函数和 PAPR 值计算理论和仿真的 CCDF 值CCDF_theoretical=CCDF_formula(N,s2,10.^(zdBs/20));  % 使用公式 Eq.(7.9) 中指定的参数 N、s2 和 zdBs 计算理论 CCDFfor i = 1:N_zdBs%zdB=zdBs(i); %z=10^(zdB/20); %CCDF_theoretical(i)=CCDF_formula(N,s2,z);CCDF_simulated(i) = sum(CFx>zdBs(i))/Nblk;   % 通过计数大于阈值 zdBs(i) 的 PAPR 值的数量并将其除以总块数 Nblk,估计仿真的 CCDFendsemilogy(zdBs,CCDF_theoretical,'k-');  hold on; grid on;    % 使用对数坐标绘制理论 CCDF 曲线semilogy(zdBs(1:3:end),CCDF_simulated(1:3:end),'k:*');      % 使用对数坐标绘制仿真 CCDF 曲线
end
axis([zdBs([1 end]) 1e-2 1]); 
title('OFDM system with N-point FFT');
xlabel('PAPR0[dB]');
ylabel('CCDF=Probability(PAPR>PAPR0)'); 
legend('Theoretical','Simulated');

②、仿真结果

请添加图片描述
上图显示了当 N = 64,128,256,512,1024 时,OFDM 信号的理论 CCDF 和仿真 CCDF,当 N 变小时,仿真结果偏离理论值,这说明只有 N 足够大时,式(7.11)才是精确的。

2、单载波基带/通频带信号的 PAPR

①、MATLAB 源码

mapper.m

function [modulated_symbols,Mod] = mapper(b,N)
% If N is given, it generates a block of N random 2^b-PSK/QAM modulated symbols.
% Otherwise, it generates a block of 2^b-PSK/QAM modulated symbols for [0:2^b-1].%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte LtdM=2^b; % Modulation order or Alphabet (Symbol) size
if b==1, Mod='BPSK'; A=1; mod_object=comm.PSKModulator('ModulationOrder', M);elseif b==2, Mod='QPSK';  A=1;mod_object = comm.PSKModulator('ModulationOrder', M, 'PhaseOffset', pi/4);else Mod=[num2str(2^b) 'QAM']; Es=1; A=sqrt(3/2/(M-1)*Es); mod_object = comm.RectangularQAMModulator('ModulationOrder', M, 'SymbolMapping', 'Gray');
end
if nargin==2 % generates a block of N random 2^b-PSK/QAM modulated symbols modulated_symbols = A * mod_object(randi([0 M-1], N, 1));elsemodulated_symbols = A * mod_object((0:M-1)');
end

modulation.m

function [s,time] = modulation(x,Ts,Nos,Fc)
% Ts : Sampling period
% Nos: Oversampling factor
% Fc : Carrier frequency
Nx=length(x);  offset = 0; 
if nargin<5scale = 1; T=Ts/Nos; % Scale and Oversampling period for Baseband
elsescale = sqrt(2);T=1/Fc/2/Nos; % Scale and Oversampling period for Passband
end
t_Ts = [0:T:Ts-T]; 
time = [0:T:Nx*Ts-T]; % One sampling interval and whole interval
tmp = 2*pi*Fc*t_Ts+offset; 
len_Ts=length(t_Ts); 
cos_wct = cos(tmp)*scale;  
sin_wct = sin(tmp)*scale;
%s = zeros(N*len_Ts,1);
for n = 1:Nxs((n-1)*len_Ts+1:n*len_Ts) = real(x(n))*cos_wct-imag(x(n))*sin_wct;
end

PAPR.m

function [PAPR_dB, AvgP_dB, PeakP_dB] = PAPR(x)
% PAPR_dB  : PAPR[dB]
% AvgP_dB  : Average power[dB]
% PeakP_dB : Maximum power[dB]%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte LtdNx=length(x); xI=real(x); xQ=imag(x);
Power = xI.*xI + xQ.*xQ;
PeakP = max(Power); PeakP_dB = 10*log10(PeakP);
AvgP = sum(Power)/Nx; AvgP_dB = 10*log10(AvgP);
PAPR_dB = 10*log10(PeakP/AvgP);

single_carrier_PAPR.m

%%%%%%%%%%%%%%%%%%%%%  计算单载波基带/通频带信号的PAPR   %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%   single_carrier_PAPR.m    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%程序说明
%%%%分析单载波下的PAPR,可画出图%%%%%%    仿真环境
%软件版本:MATLAB R2019aclear
Ts = 1;     % 采样时间间隔
L = 8;      % 每个符号的采样点数
Nos = 8;    % 过采样因子Fc = 1;     % 载波频率
b = 2;      % 比特数
M = 2^b;    % 调制方案中的符号数
[X,Mod] = mapper(b);    % 返回一个长度为 M 的复数向量 X,表示调制方案的符号集合;Mod 表示调制方案的名称
L_ = L*4;
i_b = 1;
[xt_pass_,time_] = modulation(X,Ts,L_,Fc);      % 执行连续时间调制
[xt_pass,time] = modulation(X,Ts,L,Fc);         % 执行过采样调制:for i_s = 1:Mxt_base(L*(i_s-1)+1 : L*i_s) = X(i_s)*ones(1,L);   % 生成基带信号
end
PAPR_dB_base = PAPR(xt_base);   % 计算基带信号的 PAPR
figure(1);  
% clf;
subplot(311);
stem(time,real(xt_base),'k.');  % 绘制离散时间信号的实部
hold on;  
ylabel('S_{I}(n)');
%title([Mod ', ' num2str(M) ' symbols, Ts=' num2str(Ts) 's, Fs=' num2str(1/Ts*2*Nos) 'Hz, Nos=' num2str(Nos) ', baseband, g(n)=u(n)-u(n-Ts)']);
subplot(312);
stem(time,imag(xt_base),'k.');  % 绘制离散时间信号的虚部
hold on; 
ylabel('S_{Q}(n)');
subplot(313);
stem(time,abs(xt_base).^2,'k.');    % 绘制离散时间信号的幅度平方
hold on;
title(['PAPR = ' num2str(round(PAPR_dB_base(i_b)*100)/100) 'dB']);
xlabel ('samples'); 
ylabel('|S_{I}(n)|^{2}+|S_{Q}(n)|^{2}');    
figure(2);
clf;   
PAPR_dB_pass(i_b) = PAPR(xt_pass);
subplot(211);
stem(time,xt_pass,'k.'); 
hold on; 
plot(time_,xt_pass_,'k:');
title([Mod ', ' num2str(M) ' symbols, Ts=' num2str(Ts) 's, Fs=' num2str(1/Ts*2*Nos) 'Hz, Nos=' num2str(Nos) ', Fc=' num2str(Fc) 'Hz, g(n)=u(n)-u(n-Ts)']);
ylabel('S(n)');
subplot(212)
stem(time,xt_pass.*xt_pass,'r.'); 
hold on;
plot(time_,xt_pass_.*xt_pass_,'k:');
title(['PAPR = ' num2str(round(PAPR_dB_pass(i_b)*100)/100) 'dB']);
xlabel('samples');
ylabel('|S(n)|^{2}');    
%bb_I = zeros(1,M*Nos*2); bb_Q = zeros(1,M*Nos*2);
disp('PAPRs of baseband/passband signals'); 
PAPRs_of_baseband_passband_signals=[PAPR_dB_base; PAPR_dB_pass]

②、仿真结果

在这里插入图片描述
基带信号的平均功率和峰值功率相同,因此它的 PAPR 是 0dB
在这里插入图片描述
通频带信号的 PAPR 是 3.01dB

注意:单载波信号的 PAPR 随载波频率 f c f_c fc 的变化而变化,因此,为了准确测量单载波系统的 PAPR,必须考虑通频带信号的载波频率。总之,单载波系统的 PAPR 可以由调制方案直接预测,而且不会很大,这与 OFDM 系统不同。

3、时域 OFDM 信号和幅度分布

①、MATLAB 源码

% OFDM_signal.m%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltdclear all; clc; clf;N=8;                % 子载波数量
b=2;                % 每个子载波的比特数
M=2^b;              % 每个子载波的调制阶数 
Nos=16;             % 每个OFDM符号中的子载波数量 
NNos=N*Nos;         % 总的子载波数量 
T=1/NNos;           % 每个OFDM符号的持续时间 
time = [0:T:1-T];   % 时间序列,从0到1,步长为T   [X,Mod] = mapper(b,N);      % 返回已调制符号X和调制方式Mod
X(1)=0+1i*0; % A block of 16 QPSK symbols with no DC-subcarrier 
% 使用ifft函数生成OFDM符号x。根据子载波的索引i,分为两个分支,分别对应于前N/2个子载波和后N/2个子载波。根据索引i和NNos的值,使用ifft函数生成不同的输入序列x。
for i = 1:Nif i<=N/2,  x = ifft([zeros(1,i-1) X(i) zeros(1,NNos-i+1)],NNos);else  x = ifft([zeros(1,NNos-N+i-1) X(i) zeros(1,N-i)],NNos);endxI(i,:) = real(x); xQ(i,:) = imag(x);
end
sum_xI = sum(xI); sum_xQ = sum(xQ);
figure(1), clf, subplot(311)
plot(time,xI,'k:','linewidth',1),hold on, plot(time,sum_xI,'b','linewidth',2)
title([Mod ', N=' num2str(N)]); ylabel('x_{I}(t)'); axis([0 1 min(sum_xI) max(sum_xI)]);
subplot(312)
plot(time,xQ,'k:','linewidth',1); hold on, plot(time,sum_xQ,'b','linewidth',2)
ylabel('x_{Q}(t)'); axis([0 1 min(sum_xQ) max(sum_xQ)]);
subplot(313), plot(time,abs(sum_xI+j*sum_xQ),'b','linewidth',2); hold on;
ylabel('|x(t)|'); xlabel('t');
clear('xI'), clear('xQ')
N=2^4;  NNos=N*Nos; T=1/NNos; time=[0:T:1-T]; 
Nhist=1e3;      % 历史记录数
for k = 1:Nhist[X,Mod] = mapper(b,N); X(1)=0+j*0; % A block of 16 QPSK symbols with no DC-subcarrier for i = 1:Nif (i<= N/2)  x = ifft([zeros(1,i-1) X(i) zeros(1,NNos-i+1)],NNos);else  x = ifft([zeros(1,NNos-N/2+i-N/2-1) X(i) zeros(1,N-i)],NNos);endxI(i,:) = real(x); xQ(i,:) = imag(x);endHistI(NNos*(k-1)+1:NNos*k) = sum(xI); HistQ(NNos*(k-1)+1:NNos*k) = sum(xQ);  % 将xI和xQ的总和保存在矩阵HistI和HistQ中
end
N_bin = 30;
figure(2), clf, subplot(311)
[xI_dist,bins] = hist(HistI,N_bin);   bar(bins,xI_dist/sum(xI_dist),'k'); %#ok<HIST>
title([Mod ', N=' num2str(N)]);  ylabel('pdf of x_{I}(t)');
subplot(312)
[xQ_dist,bins] = hist(HistQ,N_bin);  bar(bins,xQ_dist/sum(xQ_dist),'k');
ylabel('pdf of x_{Q}(t)');
subplot(313)
[xabs_dist,bins] = hist(abs(HistI+j*HistI),N_bin);  bar(bins,xabs_dist/sum(xabs_dist),'k');
ylabel('pdf of |x(t)|');  xlabel('x_{0}');

②、仿真结果

在这里插入图片描述
总的来说,当 N N N 增大时,PAPR 变得更加明显

在这里插入图片描述
从图中可以看出, x [ n ] x[n] x[n] 的实部和虚部服从高斯分布,而 ∣ x [ n ] ∣ |x[n]| x[n] ∣ x [ t ] ∣ |x[t]| x[t] 服从瑞利分布

对于具有 N 个子载波的OFDM符号,当每个子载波分量具有相同的相位,且恰好出现最大幅度时, OFDM 信号具有最大功率。最大功率随着 N 的增大而增大,而且出现最大功率的概率随着 N 的增大而降低。

4、Chu 序列和 IEEE802.16e 前导的 PAPR

①、MATLAB 源码

PAPR_of_Chu.m

% PAPR_of_Chu.m
% Plot Fig. 7.10(a)%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltdclear, clf
N=16; L=4; i=[0:N-1]; 
k = 3; X = exp(j*k*pi/N*(i.*i));
[x,time] = IFFT_oversampling(X,N);
PAPRdB = PAPR(x);
[x_os,time_os] = IFFT_oversampling(X,N,L); %x_os=x_os*L;
PAPRdB_os = PAPR(x_os);
subplot(221), plot(x,'o');
hold on, plot(x_os,'k*');
legend('L=1','L=4');
axis([-0.4 0.4 -0.4 0.4]), axis('equal');
plot(0.25*exp(j*pi/180*[0:359])); % circle with radius 0.25
subplot(222), plot(time,abs(x),'o', time_os,abs(x_os),'k:*');
xlabel('时间(由符号间隔归一化)');
ylabel('|IFFT(u1(k))|');
title('IFFT(X1(k)),k=3,N=16,L=1,4');
legend('L=1','L=4');
PAPRdB_without_and_with_oversampling=[PAPRdB  PAPRdB_os];

PAPR_of_preamble.m

% PAPR_of_preamble.m
% Plot Fig. 7.10(b) (the PAPR of IEEE802.16e preamble)%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltdclear, clf
N=1024; L=4; Npreamble=114; n=0:Npreamble-1; % Mod='BPSK'; 
%PAPR = zeros(N_preamble,1); PAPR_os = zeros(N_preamble,1);
for i = 1:NpreambleX=load(['D:\Work\MIMO-OFDM无线通信技术及MATLAB实现\MIMO_OFDM-master\第7章 PAPR\Chu序列和IEEE802.16e前导的PAPR\Wibro-Preamble\Preamble_sym' num2str(i-1) '.dat']);X = X(:,1); X = sign(X); X = fftshift(X);x = IFFT_oversampling(X,N); PAPRdB(i) = PAPR(x);x_os = IFFT_oversampling(X,N,L); PAPRdB_os(i) = PAPR(x_os);
end
plot(n,PAPRdB,'-o', n,PAPRdB_os,':*'), 
xlabel('前导编码[0~113]');
ylabel('|IFFT(X1(k))|');
title('IEEE 802.16e前导,L=1,4');
legend('L=1','L=4');

②、仿真结果

1) Chu 序列经 IFFT 之后的幅度

请添加图片描述
请添加图片描述
该图显示了在没有采样和 L=4 过采样的情况下,Chu 序列经过 16 点 IFFT 之后的幅度,有过采样和没有过采样的 PAPR 分别为 0dB 和 4.27dB,这说明不同的采样速度会导致 PAPR 具有明显的差异

2) IEEE 802.16e 前导的 PAPR

请添加图片描述
该图显示了 IEEE802.16e 标准中定义的 114 个前导的 PAPR,有过采样的PAPR比没有过采样的 PAPR 大 0.4dB 左右。事实上,由于前导码存在放大功率的问题,因此最初设计的这些前导码具有低的 PAPR。这就是为什么不同的采样速率并没有使这些序列的 PAPR 明显不同。然而,对于 Chu 序列,采样速率的不同通常导致 PAPR 的明显变化。因此,为了在基带对 PAPR 进行精确的测量,需要过采样过程。

5、基于限幅和滤波的 OFDM 信号

①、MATLAB 源码

mapper.m

function [modulated_symbols,Mod] = mapper(b,N)
% If N is given, it generates a block of N random 2^b-PSK/QAM modulated symbols.
% Otherwise, it generates a block of 2^b-PSK/QAM modulated symbols for [0:2^b-1].%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte LtdM=2^b; % Modulation order or Alphabet (Symbol) size
if b==1, Mod='BPSK'; A=1; mod_object=comm.PSKModulator('ModulationOrder', M);elseif b==2, Mod='QPSK';  A=1;mod_object = comm.PSKModulator('ModulationOrder', M, 'PhaseOffset', pi/4);else Mod=[num2str(2^b) 'QAM']; Es=1; A=sqrt(3/2/(M-1)*Es); mod_object = comm.RectangularQAMModulator('ModulationOrder', M, 'SymbolMapping', 'Gray');
end
if nargin==2 % generates a block of N random 2^b-PSK/QAM modulated symbols modulated_symbols = A * mod_object(randi([0 M-1], N, 1));elsemodulated_symbols = A * mod_object((0:M-1)');
end

IFFT_oversampling.m

function [xt, time] = IFFT_oversampling(X,N,L)%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltdif nargin<3,  L=1;  end
NL=N*L; T=1/NL; time = [0:T:1-T];  X = X(:).';
xt = L*ifft([X(1:N/2)  zeros(1,NL-N)  X(N/2+1:end)], NL);

add_CP.m

function y=add_CP(x,Ncp)
% Add cyclic prefix%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltdy = [x(:,end-Ncp+1:end) x];     % CP 循环前缀

clipping.m

function [x_clipped,sigma]=clipping(x,CL,sigma)
% CL   : Clipping Level
% sigma: sqrt(variance of x)%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltdif nargin<3x_mean=mean(x); x_dev=x-x_mean; sigma=sqrt(x_dev*x_dev'/length(x));   % 计算标准差
end
CL = CL*sigma;  % 限幅比 = 输入限幅比 × 标准差
x_clipped = x;  
ind = find(abs(x)>CL); % Indices to clip    % 找到大于限幅比的索引
x_clipped(ind) = x(ind)./abs(x(ind))*CL;    % 进行限幅

在这里插入图片描述

PDF_of_clipped_and_filtered_OFDM_signal.m

% PDF_of_clipped_and_filtered_OFDM_signal.m
% Plot Figs. 7.14 and 7.15%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltdclear
CR = 1.2;       % 限幅比
b=2;            % 每一QPSK符号的比特数
N=128;          % FFT大小 
Ncp=32;         % CP大小 
fs=1e6;         % 采样频率 
L=8;            % 过采样因子 
Tsym=1/(fs/N);  % 符号周期。它是指每个OFDM符号的持续时间。    Tsym = 1.28e-4
Ts=1/(fs*L);    % 采样周期                                    Ts = 1.25e-7
fc=2e6; wc=2*pi*fc;         % 载波频率                        wc = 1.2566e+7
t=[0:Ts:2*Tsym-Ts]/Tsym;    % 时间向量                        t = [0:9.7656e-4:1.999]_{2048}
t0=t((N/2-Ncp)*L);                                          % t0 = t((64-32)*8) = 0.249
f=[0:fs/(N*2):L*fs-fs/(N*2)]-L*fs/2;    % -L*fs/2 ~ L*fs/2 的频率向量  [-4e+6, 3.9961e+6]_{2048}
Fs=8;           % 滤波器的采样频率   8 MHz
Norder=104;     % 滤波器的阶数
dens=20;        % 滤波器的密度因子    大于16即可
FF=[0 1.4 1.5 2.5 2.6 Fs/2]; % 阻带/通带/阻带频率边缘向量  [0 Fstop1 Fpass1 Fpass2 Fstop2 Fs/2]
WW=[10 1 10];                % 阻带/通带/阻带加权向量   阻带中的纹波比通带中的纹波小10倍
h = firpm(Norder,FF/(Fs/2),[0 0 1 1 0 0],WW,{dens}); % BPF 系数
X = mapper(b,N);  X(1) = 0; % QPSK 调制 
x=IFFT_oversampling(X,N,L); % IFFT 和过采样       x = 8*[x(1:64), (0...0)_{1024-128}, x(65:128)]_{1024}
x_b=add_CP(x,Ncp*L); % 加 CP   x_b = [(CP)_{256}, x]_{1280}
x_b_os=[zeros(1,(N/2-Ncp)*L), x_b, zeros(1,N*L/2)]; % 多采样   x_b_os = [(0)_{256}, (x_b)_{1280}, (0)_{512}]_{2048}
x_p = sqrt(2)*real(x_b_os.*exp(j*2*wc*t)); % 从基带到通频带
x_p_c = clipping(x_p,CR); % Eq.(7.18) 限幅公式
X_p_c_f= fft(filter(h,1,x_p_c)); % norm(X_p_c_f-X_p_c_f1)
x_p_c_f = ifft(X_p_c_f);
x_b_c_f = sqrt(2)*x_p_c_f.*exp(-j*2*wc*t); % 从通频带到基带figure(1); clf % Fig. 7.15(a), (b)
nn=(N/2-Ncp)*L+[1:N*L]; nn1=N/2*L+[-Ncp*L+1:0]; nn2=N/2*L+[0:N*L];  % nn =[257:1280]_{1024}   nn1 = [257:512]_{256}  nn2=[512:1536]_{1025}
subplot(221)
plot(t(nn1)-t0, abs(x_b_os(nn1)),'k:'); hold on;    % 循环前缀 
plot(t(nn2)-t0, abs(x_b_os(nn2)),'k-');             % 基带信号 + 512个0
axis([t([nn1(1) nn2(end)])-t0  0  max(abs(x_b_os))]);
title(['Baseband signal, with CP']);
xlabel('t (normalized by symbol duration)'); ylabel('abs(x''[m])');
subplot(223)
XdB_p_os = 20*log10(abs(fft(x_b_os)));
plot(f,fftshift(XdB_p_os)-max(XdB_p_os),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);
subplot(222)
[pdf_x_p,bin]=hist(x_p(nn),50); bar(bin,pdf_x_p/sum(pdf_x_p),'k');
xlabel('x'); ylabel('pdf'); title(['Unclipped passband signal']);
subplot(224)
XdB_p = 20*log10(abs(fft(x_p)));
plot(f,fftshift(XdB_p)-max(XdB_p),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);figure(2); clf % Fig. 7.15(c), (d)
subplot(221)
[pdf_x_p_c,bin] = hist(x_p_c(nn),50);   % 限幅后的通频带信号
bar(bin,pdf_x_p_c/sum(pdf_x_p_c),'k');
title(['Clipped passband signal, CR=' num2str(CR)]);
xlabel('x'); ylabel('pdf');
subplot(223)
XdB_p_c = 20*log10(abs(fft(x_p_c)));    % 限幅后的通频带信号功率
plot(f,fftshift(XdB_p_c)-max(XdB_p_c),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);
subplot(222)
[pdf_x_p_c_f,bin] = hist(x_p_c_f(nn),50); 
bar(bin,pdf_x_p_c_f/sum(pdf_x_p_c_f),'k');
title(['Passband signal after clipping and filtering, CR=' num2str(CR)]);
xlabel('x'); ylabel('pdf');
subplot(224)
XdB_p_c_f = 20*log10(abs(X_p_c_f));
plot(f,fftshift(XdB_p_c_f)-max(XdB_p_c_f),'k');  % 限幅后的基带信号功率
xlabel('frequency[Hz]'); ylabel('PSD[dB]');
axis([f([1 end]) -100 0]);figure(3); clf % Fig. 7.14
subplot(221)
stem(h,'k'); xlabel('tap'); ylabel('Filter coefficient h[n]');  % 滤波器抽头和系数
axis([1, length(h), min(h), max(h)]);
subplot(222)
HdB = 20*log10(abs(fft(h,length(X_p_c_f))));    % 通频带限幅滤波后经过 FFT 的信号再经过 FFT 后的功率
plot(f,fftshift(HdB),'k');
xlabel('frequency[Hz]'); ylabel('Filter freq response H[dB]');
axis([f([1 end]) -100 0]);
subplot(223)
[pdf_x_p_c_f,bin] = hist(abs(x_b_c_f(nn)),50);  % 限幅滤波后基带信号
bar(bin,pdf_x_p_c_f/sum(pdf_x_p_c_f),'k');
title(['Baseband signal after clipping and filtering, CR=' num2str(CR)]);
xlabel('|x|'); ylabel('pdf');
subplot(224)
XdB_b_c_f = 20*log10(abs(fft(x_b_c_f)));        % 限幅滤波后基带信号功率
plot(f,fftshift(XdB_b_c_f)-max(XdB_b_c_f),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);

②、仿真结果

1)基带信号及通频带信号功率谱、PDF、功率

在这里插入图片描述

2)限幅信号、滤波信号的 PDF 和功率谱

在这里插入图片描述
可以看到限幅后的信号幅度低于限幅电平,也可以看到限幅后的带外频谱增大了,但滤波后的带外频谱减小了

3)等波纹通频带 FIR 滤波器的特点

在这里插入图片描述

6、采用限幅和滤波后的 PAPR 分布和 BER 性能

在这里插入图片描述
因为 CF 是 PAPR 的平方根,所以 CF 的 CCDF 可以看做 PAPR 的分布,从(a)图中可以看出,OFDM 信号的 PAPR 在限幅后显著降低,而在滤波后有所上升。CR 越小,PAPR 降低得越多。(b)图显示了使用限幅和滤波技术的 BER 性能,图中 “C” 表示只有限幅的情况,“C&F” 表示限幅和滤波都有的情况,从(b)可以看出,当 CR 减小时,BER 性能变差。

7、部分传输序列(PTS)

参考我之前的博客:减小PAPR——PTS技术

8、DFT 扩频

参考我之前的博客:减小PAPR——DFT扩频

9、采用脉冲成型的 DFT 扩频的 PAPR 分析

在这里插入图片描述
在这里插入图片描述
从上面仿真图可以看出,当滚降系数 a 从 0 变到 1 时 IFDMA 的 PAPR 性能显著提升,而 LFDMA 受脉冲成形的影响没有那么大。由于滚降系数增大时剩余带宽增加,IFDMA 可以在剩余带宽和 PAPR 性能之间进行折中
在这里插入图片描述
从上面仿真图可以看出,滚降系数 a=0.4 的 LFDMA 中的 DFT 扩频技术的 PAPR 性能随着 M 的增大而降低。

源码下载地址:采用脉冲成型的 DFT 扩频的 PAPR 分析

三、资源自取

OFDM PAPR减小思维导图

在这里插入图片描述


我的qq:2442391036,欢迎交流!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/312467.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#编程-编写和执行C#程序

编写和执行C#程序 可以使用Windows记事本应用程序来编写C#程序。在记事本应用程序中创建C#程序后,您需要编译并执行该程序以获得所需的输出。编译器将程序的源代码转换为机器代码,这样计算机就能理解程序中的指令了。 注释 除了记事本,您还可以使用任何其他文本编辑器来编写…

MAC 中多显示器的设置(Parallels Desktop)

目录 一、硬件列表&#xff1a; 二、线路连接&#xff1a; 三、软件设置&#xff1a; 1. 设置显示器排列位置及显示参数 2. 分别设置外接显示器为&#xff1a;扩展显示器&#xff0c;内建显示器为主显示器 3. 设置Parallels Desktop屏幕参数 四、结果 一、硬件列表&a…

C++实现定积分运算

文章目录 题目代码 题目 代码 #include <iostream> #include <cmath> #include <functional>using namespace std;// 定积分函数 double integrate(function<double(double)> func, double a, double b, int num_intervals) {double h (b - a) / num…

使用STM32实现多设备UART通信指南

本文将介绍如何在STM32上实现多设备UART通信&#xff0c;包括配置多个UART接口、数据的发送和接收&#xff0c;以及如何有效地进行多设备通信。我们将使用STM32CubeMX和HAL库来演示配置过程&#xff0c;并给出相关的示例代码和技巧。UART&#xff08;Universal Asynchronous Re…

怎么解决 Nginx反向代理加载速度慢?

Nginx反向代理加载速度慢可能由多种原因引起&#xff0c;以下是一些可能的解决方法&#xff1a; 1&#xff0c;网络延迟&#xff1a; 检查目标服务器的网络状况&#xff0c;确保其网络连接正常。如果目标服务器位于不同的地理位置&#xff0c;可能会有较大的网络延迟。考虑使用…

灸哥问答:测试架构师应该掌握哪些技能?

测试架构师是软件测试领域的高级职位&#xff0c;在承担工作时需要掌握多方面的技能和能力以确保测试过程的有效性、高效性和可靠性。从我的经历和认知角度&#xff0c;我觉得作为测试架构师应该掌握具备以下技能&#xff1a; 一、测试方法和策略 掌握不同的测试方法&#xf…

详细讲解MybatisPlus中的IService类中的CRUD功能(全)

目录 前言1. 基本概念2. CRUD2.1 插入2.1.1 save2.1.2 saveOrUpdate 2.2 删除2.3 修改2.4 查询2.4.1 get2.4.2 list2.4.3 page 2.5 chain链式函数 前言 大部分CRUD都来源这个类&#xff0c;对此有意义剖析&#xff0c;方便之后的功能开发 1. 基本概念 在 MyBatis-Plus 中&am…

7.java——异常

异常——error&#xff08;资源耗尽&#xff0c;JVM内部系统错误&#xff0c;代码一般处理不了&#xff09;和excption&#xff08;数组越界&#xff0c;空指针访问&#xff0c;代码可以处理&#xff09; java.lang.Throwable;异常体系的根父类 -------java.lang.Error:错误。…

Linux安装Oracle调用dbca无响应和密码问题

Linux服务器下调用dbca无响应&#xff0c;或弹出如下提示&#xff1a; 则需要在Linux命令行窗口&#xff0c;输入如下命令即可 export DISPLAYip:0.0 注意&#xff1a;该ip应该为可显示图形桌面的机器ip地址。 该桌面需要已经安装了Xmanager-Passive&#xff08;比如 Xmanag…

ES 通过查询更新某个字段,Error 500 (Internal Server Error)

问题描述&#xff1a; 项目中通过查询ES中某个字段&#xff0c;并更新某个值的字段&#xff0c;当量比较大的时候报错&#xff1a; upsert associated failed: elastic: Error 500 (Internal Server Error): Failed to compile inline script [ctx._source.pcap_filename ] …

vue3-12

需求是用户如果登录了&#xff0c;可以访问主页&#xff0c;如果没有登录&#xff0c;则不能访问主页&#xff0c;随后跳转到登录界面&#xff0c;让用户登录 实现思路&#xff0c;在用户登录之前做一个检查&#xff0c;如果登录了&#xff0c;则token是存在的&#xff0c;则放…

python练习2【题解///考点列出///错题改正】

一、单选题 【文件】 *1.【单选题】 ——文件&#xff1a;读取方法 下列哪个选项可以从文件中读取任意字节的内容&#xff1f;&#xff08;C &#xff09;A A.read() B.readline() C.readlines() D.以上全部 A\B\C三种方法都是可以读取文件中任意的字节内容的&#xff0…