算法(3)——二分查找

一、什么是二分查找

二分查找也称折半查找,是在一组有序(升序/降序)的数据中查找一个元素,它是一种效率较高的查找方法。

二、二分查找的原理

1、查找的目标数据元素必须是有序的。没有顺序的数据,二分法就失去意义。


2、数据元素通常是数值型,可以比较大小。


3、将目标元素和查找范围的中间值做比较(如果目标元素=中间值,查找结束),将目标元素分到较大/或者较小的一组。


4、通过分组,可以将查找范围缩小一半。


5、重复第三步,直到目标元素=新的范围的中间值,查找结束。

三、二分查找模板 

1、朴素二分查找模板

2、一般二分查找模板

四、二分查找经典OJ题

4、1 二分查找

704. 二分查找 - 力扣(LeetCode)

1、题目描述

2、算法思路

a. 定义 left right 指针,分别指向数组的左右区间。
b. 找到待查找区间的中间点 mid ,找到之后分三种情况讨论:
        i. arr[mid] == target 说明正好找到,返回 mid 的值

        ii. arr[mid] > target 说明 [mid, right] 这段区间都是⼤于 target 的,因此舍去右边区间,在左边 [left, mid -1] 的区间继续查找,即让 right = mid - 1 ,然后重复 2 过程;

        iii. arr[mid] < target 说明 [left, mid] 这段区间的值都是⼩于 target 的,因此舍去左边区间,在右边 [mid + 1, right] 区间继续查找,即让 left = mid + 1 ,然后重复 2 过程;
c. left right 错开时,说明整个区间都没有这个数,返回 -1

3、算法代码

class Solution {
public:int search(vector<int>& nums, int target) {int left=0,right=nums.size()-1;while(left<=right){int mid=left+(right-left)/2;if(nums[mid]>target){right=mid-1;}else if(nums[mid]<target){left=mid+1;}else{return mid;}}return -1;}
};

4、2 在排序数组中查找元素的第⼀个和最后⼀个位置

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

1、题目描述:

2、算法思路:

⽤的还是⼆分思想,就是根据数据的性质,在某种判断条件下将区间⼀分为⼆,然后舍去其中⼀个
区间,然后再另⼀个区间内查找;
⽅便叙述,⽤ x 表⽰该元素, resLeft 表⽰左边界, resRight 表⽰右边界。
寻找左边界:
我们注意到以左边界划分的两个区间的特点:
左边区间 [left, resLeft - 1] 都是⼩于 x 的;
右边区间(包括左边界) [resLeft, right] 都是⼤于等于 x 的;
因此,关于 mid 的落点,我们可以分为下⾯两种情况:
当我们的 mid 落在 [left, resLeft - 1] 区间的时候,也就是 arr[mid] < target 。说明 [left, mid] 都是可以舍去的,此时更新 left mid + 1 的位置, 继续在 [mid + 1, right] 上寻找左边界;
mid 落在 [resLeft right] 的区间的时候,也就是 arr[mid] >= target 。 说明 [mid + 1, right] (因为 mid 可能是最终结果,不能舍去)是可以舍去的,此时 更新 right mid 的位置,继续在 [left, mid] 上寻找左边界;
由此,就可以通过⼆分,来快速寻找左边界;
注意:这⾥找中间元素需要向下取整。
因为后续移动左右指针的时候:
左指针: left = mid + 1 ,是会向后移动的,因此区间是会缩⼩的;
右指针: right = mid ,可能会原地踏步(⽐如:如果向上取整的话,如果剩下 1,2 两个元
素, left == 1 right == 2 mid == 2 。更新区间之后, left right mid 的 值没有改变,就会陷⼊死循环)。
因此⼀定要注意,当 right = mid 的时候,要向下取整。
寻找右边界思路:
resRight 表⽰右边界;
我们注意到右边界的特点:
左边区间 (包括右边界) [left, resRight] 都是⼩于等于 x 的;
右边区间 [resRight+ 1, right] 都是⼤于 x 的;
因此,关于 mid 的落点,我们可以分为下⾯两种情况:
当我们的 mid 落在 [left, resRight] 区间的时候,说明 [left, mid - 1](mid 不可以舍去,因为有可能是最终结果) 都是可以舍去的,此时更新 left mid 的位置;
当 mid 落在 [resRight+ 1, right] 的区间的时候,说明 [mid, right] 内的元素 是可以舍去的,此时更新 right mid - 1 的位置;
由此,就可以通过⼆分,来快速寻找右边界;
注意:这⾥找中间元素需要向上取整。
因为后续移动左右指针的时候:
左指针: left = mid ,可能会原地踏步(⽐如:如果向下取整的话,如果剩下 1,2 两个元
素, left == 1 right == 2 mid == 1 。更新区间之后, left right mid 的值 没有改变,就会陷⼊死循环)。
右指针: right = mid - 1 ,是会向前移动的,因此区间是会缩⼩的; 因此⼀定要注意,当 right = mid 的时候,要向下取整。

3、算法代码

class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {int begin=0;if(nums.size()==0) return {-1,-1};int left=0,right=nums.size()-1;while(right>left)   //找左端点{int mid=left+(right-left)/2;if(nums[mid]<target) left=mid+1;else right=mid;}if(nums[left]!=target) return {-1,-1};else begin=left;left=0,right=nums.size()-1;while(right>left){int mid=left+(right-left+1)/2;if(nums[mid]<=target) left=mid;else right=mid-1;}return {begin,right};}
};

4、3 搜索插入位置

35. 搜索插入位置 - 力扣(LeetCode)

1、题目描述

2、算法思路

a. 分析插⼊位置左右两侧区间上元素的特点:
设插⼊位置的坐标为 index ,根据插⼊位置的特点可以知道:
[left, index - 1] 内的所有元素均是⼩于 target 的;
[index, right] 内的所有元素均是⼤于等于 target 的。
b. left 为本轮查询的左边界, right 为本轮查询的右边界。根据 mid 位置元素的信息,分析下⼀轮查询的区间:
nums[mid] >= target 时,说明 mid 落在了 [index, right] 区间上,
mid 左边包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [left, mid] 上。因此,更新 right mid 位置,继续查找。
nums[mid] < target 时,说明 mid 落在了 [left, index - 1] 区间上, mid 右边但不包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [mid + 1, right] 上。因此,更新 left mid + 1 的位置,继续查找。
c. 直到我们的查找区间的⻓度变为 1 ,也就是 left == right 的时候, left 或者
right 所在的位置就是我们要找的结果。

3、算法代码

class Solution {
public:int searchInsert(vector<int>& nums, int target) {int left=0,right=nums.size()-1;while(right>left){int mid=left+(right-left)/2;if(nums[mid]<target) left=mid+1;else right=mid;}if(nums[left]<target) return right+1;return right;}
};

4、4 X的平方根

69. x 的平方根 - 力扣(LeetCode)

1、题目描述

2、算法思路

依次枚举 [0, x] 之间的所有数 i
(这⾥没有必要研究是否枚举到 x / 2 还是 x / 2 + 1 。因为我们找到结果之后直接就返回
了,往后的情况就不会再判断。反⽽研究枚举区间,既耽误时间,⼜可能出错)
如果 i * i == x ,直接返回 x
如果 i * i > x ,说明之前的⼀个数是结果,返回 i - 1
由于 i * i 可能超过 int 的最⼤值,因此使⽤ long long 类型

3、算法代码

class Solution {
public:int mySqrt(int x) {if(x<1) return 0;int left=1,right=x;while(right>left){long long mid=left+(right-left+1)/2;if(mid*mid>x) right=mid-1;else left=mid;}return left;}
};

4、5 山峰数组的峰顶

852. 山脉数组的峰顶索引 - 力扣(LeetCode)

1、题目描述

2、算法思路

峰顶的特点:⽐两侧的元素都要⼤。
因此,我们可以遍历数组内的每⼀个元素,找到某⼀个元素⽐两边的元素⼤即可
3、算法代码
class Solution {
public:int peakIndexInMountainArray(vector<int>& arr) {for(int i=1;i<arr.size()-1;i++){if(arr[i]>arr[i-1]&&arr[i]>arr[i+1]){return i;} }return 0;}
};

4、5 寻找峰值   

162. 寻找峰值 - 力扣(LeetCode)

1、题目描述

2、算法思路寻找⼆段性:

任取⼀个点 i ,与下⼀个点 i + 1 ,会有如下两种情况:
arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负⽆穷),那么我们可以去左侧去寻找结果;
arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负⽆穷),那么我们可以去右侧去寻找结果。
当我们找到「⼆段性」的时候,就可以尝试⽤「⼆分查找」算法来解决问题。
3、算法代码
class Solution {
public:int findPeakElement(vector<int>& nums) {vector<int> ret;int left=0,right=nums.size()-1;while(right>left){int mid=left+(right-left+1)/2;if(nums[mid]>nums[mid-1]) left=mid;else right=mid-1;}return left;}
};

4、6 寻找旋转排序数组中的最⼩值

153. 寻找旋转排序数组中的最小值 - 力扣(LeetCode)

1、题目描述

2、算法思路

题⽬中的数组规则如下图所示:

其中 C 点就是我们要求的点。
⼆分的本质:找到⼀个判断标准,使得查找区间能够⼀分为⼆。
通过图像我们可以发现, [A B] 区间内的点都是严格⼤于 D 点的值的, C 点的值是严格⼩于 D 点的值的。但是当 [C D] 区间只有⼀个元素的时候, C 点的值是可能等于 D 点的值的。
因此,初始化左右两个指针 left right :然后根据 mid 的落点,我们可以这样划分下⼀次查询的区间:
mid [A B] 区间的时候,也就是 mid 位置的值严格⼤于 D 点的值,下⼀次查询区间在 [mid + 1 right] 上;
mid [C D] 区间的时候,也就是 mid 位置的值严格⼩于等于 D 点的值,下次查询区间在 [left mid] 上。
当区间⻓度变成 1 的时候,就是我们要找的结果。
3、算法代码 
class Solution {
public:int findMin(vector<int>& nums) {int tmp=nums[nums.size()-1];int left=0,right=nums.size()-1;while(right>left){int mid=left+(right-left)/2;if(nums[mid]>tmp) left=mid+1;else right=mid;}return nums[left];}
};

4、7 0~n-1缺失的数字

LCR 173. 点名 - 力扣(LeetCode)

1、题目描述

2、算法思路

关于这道题中,时间复杂度为 O(N) 的解法有很多种,⽽且也是⽐较好想的,这⾥就不再赘述。
本题只讲解⼀个最优的⼆分法,来解决这个问题。
在这个升序的数组中,我们发现:
在第⼀个缺失位置的左边,数组内的元素都是与数组的下标相等的;
在第⼀个缺失位置的右边,数组内的元素与数组下标是不相等的。
因此,我们可以利⽤这个「⼆段性」,来使⽤「⼆分查找」算法。
3、算法代码
class Solution {
public:int takeAttendance(vector<int>& records) {int left=0,right=records.size()-1,k=0;while(right>left){int mid = left+(right-left)/2;if(records[mid]!=mid) right=mid;else left=mid+1;}return left==records[left]?left+1:left;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/312819.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【PTA-C语言】实验七-函数与指针I

如果代码存在问题&#xff0c;麻烦大家指正 ~ ~有帮助麻烦点个赞 ~ ~ 目录——实验七-函数与指针I 6-1 弹球距离&#xff08;分数 10&#xff09;6-2 使用函数输出一个整数的逆序数&#xff08;分数 10&#xff09;6-3 使用函数求最大公约数&#xff08;分数 10&#xff09;6-4…

Flink Job 执行流程

Flink On Yarn 模式 ​ 基于Yarn层面的架构类似 Spark on Yarn模式&#xff0c;都是由Client提交App到RM上面去运行&#xff0c;然后 RM分配第一个container去运行AM&#xff0c;然后由AM去负责资源的监督和管理。需要说明的是&#xff0c;Flink的Yarn模式更加类似Spark on Ya…

数据资产入表之——数据确权

关注WX公众号&#xff1a; commindtech77&#xff0c; 获得数据资产相关白皮书下载地址 1. 回复关键字&#xff1a;数据资源入表白皮书 下载 《2023数据资源入表白皮书》 2. 回复关键字&#xff1a;光大银行 下载 光大银行-《商业银行数据资产会计核算研究报告》 3. 回复关键字…

一文掌握Java注解之@SpringBootApplication知识文集(1)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

【sql】MyBatis Plus中,sql报错LIKE “%?%“:

文章目录 一、报错详情&#xff1a;二、解决&#xff1a;三、扩展&#xff1a; 一、报错详情&#xff1a; 二、解决&#xff1a; 将LIKE “%”#{xxx}"%"改为LIKE CONCAT(‘%’, #{xxx}, ‘%’) 三、扩展&#xff1a; MyBatis Plus之like模糊查询中包含有特殊字符…

CycleGAN 是如何工作的?

一、说明 CycleGAN即循环对抗网络&#xff0c;是图像翻译成图像的模型&#xff1b;是Pix2Pix模型的扩展&#xff0c;区别在于&#xff0c;Pix2Pix模型需要输入图像和目标图像成对给出训练&#xff0c;CycleGAN则不需要&#xff0c;例如&#xff1a;从 SAR 生成 RGB 图像、从 RG…

在STM32上使用DMA进行UART通信

本文将介绍如何在STM32上使用DMA&#xff08;Direct Memory Access&#xff09;进行UART通信&#xff0c;以提高数据传输效率。我们将介绍STM32的DMA和UART模块的基本概念和使用方法&#xff0c;并给出相关的示例代码和注意事项。DMA&#xff08;Direct Memory Access&#xff…

Spark中的数据加载与保存

Apache Spark是一个强大的分布式计算框架&#xff0c;用于处理大规模数据。在Spark中&#xff0c;数据加载与保存是数据处理流程的关键步骤之一。本文将深入探讨Spark中数据加载与保存的基本概念和常见操作&#xff0c;包括加载不同数据源、保存数据到不同格式以及性能优化等方…

Python pycharm编辑器修改代码字体

在pycharm编辑器下修改代码字体&#xff0c;可以按照以下步骤&#xff1a; 点开上图所示的菜单&#xff0c; 再点击File->Settings&#xff0c;进入设置页面。 我们找到Editor下的Font并点选&#xff0c;然后我们就可以在右侧修改字体相关配置了。 这里建议使用等宽字体&…

C++面试宝典第13题:计算餐厅账单

题目 假如你是一家餐厅的收银员,需要编写一个程序来计算顾客的账单。程序应该能够接受顾客点的菜品和数量,并根据菜品的单价计算出总价。另外,程序还应该能够处理折扣和优惠券,并输出最终的账单金额。 解析 这道题主要考察应聘者使用面向对象的设计方法来解决实际问题的能力…

2023年“中银杯”四川省职业院校技能大赛“云计算应用”赛项样题卷②

2023年“中银杯”四川省职业院校技能大赛“云计算应用”赛项&#xff08;高职组&#xff09; 样题&#xff08;第2套&#xff09; 目录 2023年“中银杯”四川省职业院校技能大赛“云计算应用”赛项&#xff08;高职组&#xff09; 样题&#xff08;第2套&#xff09; 模块…

【数据结构】栈和队列(队列的基本操作和基础知识)

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343&#x1f525; 系列专栏&#xff1a;《数据结构》https://blog.csdn.net/qinjh_/category_12536791.html?spm1001.2014.3001.5482 ​ 目录 前言 队列 队列的概念和结构 队列的…