堆的应用:堆排序和TOP-K问题

上次才讲完堆的相关问题:二叉树顺序结构与堆的概念及性质(c语言实现堆
那今天就接着来进行堆的主要两方面的应用:堆排序和TOP-K问题


文章目录

  • 1.堆排序
    • 1.1概念、思路及代码
    • 1.2改良代码(最初建立大堆用AdjustDow)
  • 2. TOP-K问题


1.堆排序

1.1概念、思路及代码

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建立堆
  • 升序:建立大堆
  • 降序:建立小堆
  1. 利用堆删除思想来进行排序:堆顶元素是当前堆中的最大值(大堆)或最小值(小堆),将堆顶元素与堆中最后一个元素交换,然后将剩余元素重新调整成堆,再取出堆顶元素。重复上述步骤,直到所有元素都被取出,即完成了排序
#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}void AdjustUp(HPDataType* a, int child)
{int father = (child - 1) / 2;while (child > 0){if (a[child] > a[father]){Swap(&a[child], &a[father]);//更新下标child = father;father = (father - 1) / 2;}else{break;//一旦符合小堆了,就直接退出}}
}void AdjustDown(HPDataType* a, int n, int father)
{int child = father * 2 + 1;//假设左孩子大while (child < n){if (child + 1 < n && a[child] < a[child + 1]){child++;}if (a[child] > a[father]){Swap(&a[child], &a[father]);father = child;child = father * 2 + 1;}else{break;}}
}void HeapSort(int* arr, int n)//升序
{//先建大堆for (int i = 0; i < n; i++){AdjustUp(arr, i);}int a = n - 1;while (a > 0){//此时最大的是堆顶,堆顶跟最后一个交换Swap(&arr[0], &arr[a]);//现在最大的已经在最后了,不考虑它,把新塔顶降下来,重新编程大堆AdjustDown(arr, a, 0);a--;}}int main()
{int arr[]= { 4,6,2,1,5,8,2,9 };for (int i = 0; i < sizeof(arr) / sizeof(int); i++){printf("%d ", arr[i]);}printf("\n");HeapSort(arr, sizeof(arr) / sizeof(int));for (int i = 0; i < sizeof(arr) / sizeof(int); i++){printf("%d ", arr[i]);}
}

结果:

请添加图片描述

1.2改良代码(最初建立大堆用AdjustDow)

仅仅该那一部分:

void HeapSort(int* arr, int n)//升序
{//先建大堆//for (int i = 0; i < n; i++)//{//	AdjustUp(arr, i);//}for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}int a = n - 1;while (a > 0){//此时最大的是堆顶,堆顶跟最后一个交换Swap(&arr[0], &arr[a]);//现在最大的已经在最后了,不考虑它,把新塔顶降下来,重新编程大堆AdjustDown(arr, a, 0);a--;}}

对于一个具有n个节点的完全二叉树来说,最后一个非叶子节点的下标是(n-1-1)/2,也就是说,从最后一个非叶子节点开始,依次向上调整每个节点,就可以建立一个大堆

相比于向上调整,向下调整的好处:时间复杂度低

  • 向下调整的时间复杂度是O(n),而向上调整的时间复杂度是O(nlogn)

建堆的时间复杂度为 O(n),排序过程的时间复杂度为 O(n log n)(建堆的时间复杂度为 O(n),而对堆进行排序的过程中,需要进行 n-1 次堆调整操作,每次堆调整的时间复杂度为 O(log n)。因此,排序过程的时间复杂度为 O(n log n))


2. TOP-K问题

TOP-K问题:求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大

对于Top-K问题,能想到的最简单直接的方式就是排序,然后直接取。 但是:如果数据量非常大,排序就不 太可取了,最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    • 要找前k个最大的元素,则建小堆
    • 要找前k个最小的元素,则建大堆
  1. 用剩余的元素依次与堆顶元素来比较,不满足则替换堆顶元素
    • 要找前k个最大的元素:但凡剩余的有比小堆堆顶大的就进入到堆里面,然后向下沉;如果建立大堆有可能一个都进不来。
    • 找前k个最小的也同理
void CreateData()//用来创建有随机数的文件的进行检测
{int N = 1000;srand(time(0));FILE* f = fopen("data.txt", "w");for (int i = 0; i < N; i++){int a = (rand()) % 10000;fprintf(f,"%d\n", a);}fclose(f);}void PrintTopK(int k)//前k个大的
{//先读文件FILE* fout = fopen("data.txt", "r");if (fout == NULL){perror("fopen file");return -1;}int* a = (int*)malloc(sizeof(int) * k);for (int i = 0; i < k; i++)//建立元素k的小堆{fscanf(fout, "%d", &a[i]);//把文件里的前k个数字写入数组里AdjustUp(a, k);}//如果有比堆顶大的,就进来int n = 0;while (fscanf(fout, "%d", &n) != EOF)//读到文件读完就停止{if (n > a[0]){a[0] = n;AdjustDown(a, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", a[i]);}printf("\n");fclose(fout);
}int main()
{PrintTopK(5);return 0;
}

结果如下:

请添加图片描述


那这次堆的两大应用就先到这里啦,到此二叉树顺序结构部分的知识也已经分享完毕了。感谢大家的支持,希望能帮助到大家!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/313920.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯一维前缀和 | 算法基础

⭐简单说两句⭐ ✨ 正在努力的小新~ &#x1f496; 超级爱分享&#xff0c;分享各种有趣干货&#xff01; &#x1f469;‍&#x1f4bb; 提供&#xff1a;模拟面试 | 简历诊断 | 独家简历模板 &#x1f308; 感谢关注&#xff0c;关注了你就是我的超级粉丝啦&#xff01; &…

《MySQL系列-InnoDB引擎01》MySQL体系结构和存储引擎

文章目录 第一章 MySQL体系结构和存储引擎1 数据库和实例2 MySQL配置文件3 MySQL数据库路径4 MySQL体系结构5 MySQL存储引擎5.1 InnoDB存储引擎5.2 MyISAM存储引擎5.3 NDB存储引擎5.4 Memory存储引擎5.5 Archive存储引擎5.6 Federated存储引擎 6 连接MySQL6.1 TCP/IP6.2 命名管…

数据统计的一些专业术语学习

数据统计的一些专业术语学习 1. 极差2. 方差3. 标准差4. 均值绝对差 1. 极差 数据统计的极差&#xff0c;又称全距&#xff0c;是指一组数据中最大值和最小值之差。 举个例子&#xff0c;如果我们有一组数据&#xff1a;1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c…

Visual Transformer (ViT)模型详解

1 Vit简介 1.1 Vit的由来 ViT是2020年Google团队提出的将Transformer应用在图像分类的模型&#xff0c;虽然不是第一篇将transformer应用在视觉任务的论文&#xff0c;但是因为其模型“简单”且效果好&#xff0c;可扩展性强&#xff08;scalable&#xff0c;模型越大效果越好…

Windows系统历史版本简介详细版

学习目标&#xff1a; 目录 学习目标&#xff1a; 学习内容&#xff1a; 学习产出&#xff1a; Windows 11的全新用户界面设计&#xff1a;学习新的任务栏、开始菜单、窗口管理等界面元素的使用与操作。 Windows 11的新功能和特点&#xff1a;学习新的虚拟桌面、Microsoft Team…

07-2-接口文档管理工具-swagger注解使用__ev

swagger参考demo package com.example.swagger2.controller;import com.example.swagger2.exception.SwaggerException; import com.example.swagger2.model.User; import io.swagger.annotations.*; import org.springframework.web.bind.annotation.*;import java.util.Has…

多模态大模型的前世今生

1 引言 前段时间 ChatGPT 进行了一轮重大更新&#xff1a;多模态上线&#xff0c;能说话&#xff0c;会看图&#xff01;微软发了一篇长达 166 页的 GPT-4V 测评论文&#xff0c;一时间又带起了一阵多模态的热议&#xff0c;随后像是 LLaVA-1.5、CogVLM、MiniGPT-5 等研究工作…

HTTP协议编程实战(二)实战二

使用析构函数主要是在里面关闭套接字&#xff08;socket&#xff09;; waitForReadyRead()里面参数是毫秒&#xff0c;失败返回false; \r\n表示请求头部已经结束了&#xff0c;HTTP/1.1是版本号&#xff0c;200 ok表示请求响应成功 关闭的话就在前面加/

【阅读笔记】LoRAHub:Efficient Cross-Task Generalization via Dynamic LoRA Composition

一、论文信息 1 论文标题 LoRAHub&#xff1a;Efficient Cross-Task Generalization via Dynamic LoRA Composition 2 发表刊物 NIPS2023_WorkShop 3 作者团队 Sea AI Lab, Singapore 4 关键词 LLMs、LoRA 二、文章结构 #mermaid-svg-Gn81hPysu7z59nlv {font-family:&…

ARM CCA机密计算软件架构之内存加密上下文(MEC)

内存加密上下文(MEC) 内存加密上下文是与内存区域相关联的加密配置,由MMU分配。 MEC是Arm Realm Management Extension(RME)的扩展。RME系统架构要求对Realm、Secure和Root PAS进行加密。用于每个PAS的加密密钥、调整或加密上下文在该PAS内是全局的。例如,对于Realm PA…

LLM应用的分块策略

每日推荐一篇专注于解决实际问题的外文&#xff0c;精准翻译并深入解读其要点&#xff0c;助力读者培养实际问题解决和代码动手的能力。 欢迎关注公众号 原文标题&#xff1a;Chunking Strategies for LLM Applications 原文地址&#xff1a;https://www.pinecone.io/learn/c…

电子招标采购系统源码之从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。

在数字化时代&#xff0c;采购管理也正经历着前所未有的变革。全过程数字化采购管理成为了企业追求高效、透明和规范的关键。该系统通过Spring Cloud、Spring Boot2、Mybatis等先进技术&#xff0c;打造了从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通过…