图像分割实战-系列教程8:unet医学细胞分割实战6(医学数据集、图像分割、语义分割、unet网络、代码逐行解读)

🍁🍁🍁图像分割实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

unet医学细胞分割实战1
unet医学细胞分割实战2
unet医学细胞分割实战3
unet医学细胞分割实战4
unet医学细胞分割实战5
unet医学细胞分割实战6

10、val.py解读

在结束训练后,已经保存了模型,现在可以对模型进行验证,运行过程需要指定参数:

"""
需要指定参数:--name dsb2018_96_NestedUNet_woDS
"""

10.1 基本参数与主要工具包

import argparse
import os
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
import cv2
import torch
import torch.backends.cudnn as cudnn
import yaml
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import archs
from dataset import Dataset
from metrics import iou_score
from utils import AverageMeter
def parse_args():parser = argparse.ArgumentParser()parser.add_argument('--name', default=None, help='model name')args = parser.parse_args()return args

这里在前面的train.py已经有过解析

10.2 main函数解析

def main():args = parse_args()with open('models/%s/config.yml' % args.name, 'r') as f:config = yaml.load(f, Loader=yaml.FullLoader)print('-'*20)for key in config.keys():print('%s: %s' % (key, str(config[key])))print('-'*20)cudnn.benchmark = True# create modelprint("=> creating model %s" % config['arch'])model = archs.__dict__[config['arch']](config['num_classes'],config['input_channels'],config['deep_supervision'])model = model.cuda()# Data loading codeimg_ids = glob(os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext']))img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]_, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=41)model.load_state_dict(torch.load('models/%s/model.pth' %config['name']))model.eval()val_transform = Compose([transforms.Resize(config['input_h'], config['input_w']),transforms.Normalize(),])val_dataset = Dataset(img_ids=val_img_ids,img_dir=os.path.join('inputs', config['dataset'], 'images'),mask_dir=os.path.join('inputs', config['dataset'], 'masks'),img_ext=config['img_ext'],mask_ext=config['mask_ext'],num_classes=config['num_classes'],transform=val_transform)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=config['batch_size'],shuffle=False,num_workers=config['num_workers'],drop_last=False)avg_meter = AverageMeter()for c in range(config['num_classes']):os.makedirs(os.path.join('outputs', config['name'], str(c)), exist_ok=True)with torch.no_grad():for input, target, meta in tqdm(val_loader, total=len(val_loader)):input = input.cuda()target = target.cuda()# compute outputif config['deep_supervision']:output = model(input)[-1]else:output = model(input)iou = iou_score(output, target)avg_meter.update(iou, input.size(0))output = torch.sigmoid(output).cpu().numpy()for i in range(len(output)):for c in range(config['num_classes']):cv2.imwrite(os.path.join('outputs', config['name'], str(c), meta['img_id'][i] + '.jpg'),(output[i, c] * 255).astype('uint8'))print('IoU: %.4f' % avg_meter.avg)plot_examples(input, target, model,num_examples=3)torch.cuda.empty_cache()

10.3 验证结果展示

def plot_examples(datax, datay, model,num_examples=6):fig, ax = plt.subplots(nrows=num_examples, ncols=3, figsize=(18,4*num_examples))m = datax.shape[0]for row_num in range(num_examples):image_indx = np.random.randint(m)image_arr = model(datax[image_indx:image_indx+1]).squeeze(0).detach().cpu().numpy()ax[row_num][0].imshow(np.transpose(datax[image_indx].cpu().numpy(), (1,2,0))[:,:,0])ax[row_num][0].set_title("Orignal Image")ax[row_num][1].imshow(np.squeeze((image_arr > 0.40)[0,:,:].astype(int)))ax[row_num][1].set_title("Segmented Image localization")ax[row_num][2].imshow(np.transpose(datay[image_indx].cpu().numpy(), (1,2,0))[:,:,0])ax[row_num][2].set_title("Target image")plt.show()

最终输出结果显示:
在这里插入图片描述

unet医学细胞分割实战1
unet医学细胞分割实战2
unet医学细胞分割实战3
unet医学细胞分割实战4
unet医学细胞分割实战5
unet医学细胞分割实战6

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/314510.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV-Python(21):OPenCV查找及绘制轮廓

1.认识轮廓 1.1 目标 理解什么是轮廓学习掌握找轮廓、绘制轮廓等学习使用cv2.findContours()、cv2.drawContours()函数的用法 1.2 什么是轮廓 在OpenCV中,轮廓是图像中连续的边界线的曲线,具有相同的颜色或者灰度,用于表示物体的形状。轮廓…

学生信息管理系统 Java+SQL Server 数据库原理课程

该项目实现了图形化界面的数据库的登录,以及对数据库中表的增删查改。 正好老师布置了相关作业,通过Java 连接 SQL Server 数据库,就写一个学生管理系统。 jdk8 数据库连接通过sqljdbc6.0 图形化界面用swing 目录 1、Java 连接SQL Serv…

安装Typora

链接:https://pan.baidu.com/s/1OLHtUTziKdB0sW0UIOnBBw?pwd6666 提取码:6666

Spring04

一、AOP的概念 AOP 为 (Aspect Oriented Programming) 的缩写,意为:面向切面编程,底层是使用动态代理的技术实现对目标方法的增强和控制访问等功能。 其中AOP中有几个重要的概念: 1、通知:增强的逻辑,或者后期要加入的代码。 2、目…

Nginx 简介和入门 - part1

虽然作为1个后端程序员, 终究避不开这东西 安装Nginx 本人的测试服务器是debian , 安装过程跟ubuntu基本一样 sudo apt-get install nginx问题是 nginx 安装后 执行文件在/usr/sbin 而不是/usr/bin 所以正常下普通用户是无法使用的。 必须切换到root…

【C语言】Ubuntu 22上用GTK写GUI程序

一、GTK介绍 GTK (GIMP Toolkit) 是一个多平台的图形用户界面工具包。它最初是为图像处理程序 GIMP 开发的,后来演变成为许多操作系统上开发图形界面应用程序的通用库。GTK 是用C语言编写的,并且是自由和开源软件,遵循LGPL (GNU Lesser Gene…

python多环境管理工具——pyenv-win安装与使用教程

目录 pyenv-win简介 pyenv-win安装 配置环境变量 pyenv的基本命令 pyenv安装py环境 pyenv安装遇到问题 pycharm测试 pyenv-win简介 什么是pyenv-win: 是一个在windows系统上管理python版本的工具。它是pyenv的windows版本,旨在提供类似于unix/li…

BGP路由知识点

目录 1.BGP的工作原理: 2.BGP路由的一般格式: 3.三种不同的自治系统AS 4.BGP的路由选择 5.BGP的四种报文 BGP(Border Gateway Protocol)是一种用于自治系统(AS)之间的路由选择协议。它是互联网中最常用…

CorelDRAW是什么软件?coreldraw软件可以做什么?

CorelDRAW是什么软件? cdr是coreldraw graphics suite的简称,它是corel企业的平面设计软件,cdr软件是corel公司出品的矢量图形制作工具软件,主要用于矢量图及页面设计和图像编辑。这个图形工具给设计师提供了矢量动画、页面设计、…

JDBC->SpringJDBC->Mybatis封装JDBC

一、JDBC介绍 Java数据库连接,(Java Database Connectivity,简称JDBC)是Java语言中用来规范客户端程序如何来访问数据库的应用程序接口,提供了诸如查询和更新数据库中数据的方法。JDBC也是Sun Microsystems的商标。我们…

全局异常和自定义异常处理

全局异常GlobalException.java,basePackages:controller层所在的包全路径 import com.guet.score_management_system.common.domian.AjaxResult; import org.springframework.web.bind.annotation.ControllerAdvice; import org.springframework.web.bi…

计算机网络复习1

概论 文章目录 概论计算机网络的组成功能分类性能指标(搞清楚每个时延的具体定义)分层结构协议、接口和服务服务的分类ISO/OSITCP/IP两者的不同 计算机网络的组成 组成部分:硬件,软件和协议(协议:传输数据…