深度学习核心技术与实践之自然语言处理篇

非书中全部内容,只是写了些自认为有收获的部分。

自然语言处理简介

NLP的难点

(1)语言有很多复杂的情况,比如歧义、省略、指代、重复、更正、倒序、反语等

(2)歧义至少有如下几种:
        1.有些歧义是指代不明确带来的。比如“曾记否,我与你认识的时候,还是个十来岁的少年,纯真无瑕,充满幻想。"其中十来岁的少年指代不明,有可能指你,也有可能指我。
        2.有些歧义是机器断句困难导致组合层次不同带来的。比如“我们四个人一”可以理解为“我们/四个人一组”或“我们四个人/一组”,“这件事我办不好”可以理解为“这件事/我/办不好”或“这件事/我办/不好”。
        3.有些歧义是结构关系不同导致的。比如“学生家长”可以理解为“学生的家长”或"学生和家长”,"出口食品”可以理解为动宾关系,也可以理解为偏正关系。
        4.有些歧义是词语语义多带来的。比如“他想起来了”可以理解为“他想起床了”或者“他想起来某件事情了”
        5.词类不同也可以带来歧义。比如“我要炒饭”中的“炒”可以是动词,也可以是形容词.
        6.很多新的品牌或网络用语也会带来歧义问题

NLP的研究范围

(1)分词:利用算法将一个汉字序列切分为一个个单独的词。比如将“手
爱机器学习”切分为“我/爱/机器学习“
(2)词性标注:将分词结果中的每个单词标注为名词、动词、形容词或其他词性的过程
(3)命名实体识别:识别文本串中具有特定物理意义的实体单词,比如人名、地名、机构名等
(4)关键词提取:提取文本串中若干个可以代表文章语义内容的词汇或词语
(5)自动摘要:也称为摘要提取,即根据文本语义内容提取较短的语句
(6)主题模型:隐式的主题模型如Latent Semantic Analysis (LSA) 、Probabilistic Latent Semantic Analysis ( PLSA) 、 Latent Dirichlet Allocation (LDA) 等都是非常常见的研究领域。
(7)依存句法分析:分析语言成分之间的依存关系,并揭示其语法树
(8)词嵌入 (Word Embedding) :将词采用向量表示。词嵌入从2013年左右开始就一直比较流行,可以说,词嵌入本身不是深度学习,但词嵌入是深度学习用于自然语言处理的基本前提
(9)机器翻译:利用计算机将一种自然语言转换成另一种自然语言的过程,两种自然语言分别称为源语言和目标语言

词性标注

传统词性标注模型

(1)传统的词性标注方法有隐马尔可夫模型(HMM)和最大马尔可夫模型(MEMM)等。其中,HMM是生成模型,MEMM是判别模型

(2)基于MEMM的词性标注器抽取当前待标注单词附近的特征,然后利用这些特征判别当前单词的词性。MEMM是最大熵模型(ME) 在处理序列模型方面的变种。其思想是在一串满足约束的标签中选出一个熵最大的标签

(3)当前单词的上下文信息又叫作特征。根据在语料中出现的频次,可以将单词分为常见词和罕见词。常见词周围的特征包括:待标注的单词、待标注单词附近的单词、待标注单词附近已标注单词的词性标签等;罕见词的特征包括:单词的后缀、单词的前缀、单词是否包合数字、单词是否首字母大写等

(4)HMM和MEMM存在同一个问题,就是只能从一个方向预测接下来的标注。一种解决方法是用例如CRF这样的强大模型,但是CRF的计算开销太大,并且对标注效果的提升有限

基于神经网络的词性标注模型

(1)模型从左向右依次标注句子中的单词,对于当前单词,抽取周用一定窗口大小内的特征,然后将其作为特征向量送入前馈神经网络分类器

(2)整个神经网络分为多层。第一层把每个单词映射到一个特征向量,得到单词级别的特征,第二层利用滑动窗口得到单词上下文的特征向量,不像传统的词袋方法,这个方法保留了窗口内单词的顺序关系。同时也可以加入其他特征,如单词是否首字母大写、单词的词干等

(3)在计算上下文特征时只考虑当前单词附近窗口大小为k范围内的单词,这种方法叫作窗口方法

(4)将整个句子的单词特征向量送入后续网络中,这种方法叫作句子方法

(5)对于词性标注来说,句子方法并不能带来明显的效果提升,但是对于自然语言里的某些任务,如语义角色标注(SRL),句子方法带来的效果提升会比较明显

(6)因为句子长度一般是不定的,所以在使用句子方法的神经网络模型中会增加卷积层

(7)用无监督训练得到的词向量初始化词性标注模型的词向量,能明显提升词性标注的准确率

基于Bi-LSTM的神经网络词性标注

(1)普通的词向量结合大量语料可以学习到单词间语义和语法上的相似性。举个例子,模型可以学到cats、kings、queens之间的线性相关性与cat、king、queen之间的线性相关性一样。不过模型并不能学到前面这组单词是由后面这组单词在末尾加s得到的

(2)普通的词向量模型查找表过于庞大,于是就有人提出将单词拆成更小的单元。基于字符的词向量模型的输入、输出和普通的词向量模型是一样的,因此在神经网络模型中这两种模型可以相互替换。与普通的词向量模型类似,基于字符的词向量模型是给字符集合建立一个查找表。字符集合包括大小写字母、数字、标点等,每个字符都可以在查找表中找到对应的字符向量,每个单词都可以看成一串字符,将单词中的字符对应的向量从左到右依次送入LSTM模型,再以右向左依次送入LSTM模型。两个方向的LSTM模型生成的结果组合生成当前单词的词向量,这样就可以利用Bi-LSTM模型得到单词的向量表示。整个过程如图19-3所示

(3)模型架构

(4)相对于普通的词向量模型,基于字符的词向量模型减少了很多参数。不过,因为英文中单词构成的复杂性,该模型在词性标注上的表现并没有超越现有模型

(5)虽然基于字符的词向量模型可以学习ed,ily这种形变特征,但是英文中有些字符构成很像的单词之间的差异却很大,比如lesson和lessen,虽然以字符角度看起来很像,但是它们的含义却完全不同

依存句法分析

未完待续...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/315114.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一篇文章掌握系统架构的演变和常见微服务框架

目录 前言 一、系统架构的演变 1、单体应用架构 优点: 缺点: 2、垂直应用架构 优点: 缺点: 3、分布式SOA架构 3.1 什么是SOA 3.2 SOA架构 优点: 缺点: 4、微服务架构 优点: 缺点…

【活动回顾】ABeam 德硕 | 企业座谈及宣讲会--石河子大学专场

ABeam 石河子大学校招之旅 沙漠绿洲,戈壁明珠 近日,ABeam大中华区董事长兼总经理中野洋辅先生带领西安招聘团队来到新疆维吾尔自治区石河子市——石河子大学,与信息科学与技术学院领导就校企合作事宜进行了深入的座谈交流,并在随…

排序算法之快速排序

快速排序是一种高效的排序算法,它的基本思想是采用分治策略,将一个无序数组分割成两个子数组,分别对子数组进行排序,然后将两个排序好的子数组合并成一个有序数组。快速排序的性能优于归并排序,尤其在处理大规模数据时…

代表团坐车 - 华为OD统一考试

OD统一考试(B卷) 分值: 100分 题解: Java / Python / C 题目描述 某组织举行会议,来了多个代表团同时到达,接待处只有一辆汽车可以同时接待多个代表团,为了提高车辆利用率,请帮接待…

网络安全的红利还能吃几年?

一般人就别来凑热闹了,技术和嘴皮子都不硬混不出头的,干几年安服仔到时候跑都没处跑,行业和红利都会长久存在,但是能吃到的有多少就不好说了,92出身热爱或者技术过硬热爱尽管往里进,没出身没技术想wlb的建议…

Attention机制

前置知识&#xff1a;RNN&#xff0c;LSTM/GRU 提出背景 Attention模型是基于Encoder-Decoder框架提出的。Encoder-Decoder框架&#xff0c;也就是编码-解码框架&#xff0c;主要被用来处理序列-序列问题。 Encoder&#xff1a;编码器&#xff0c;将输入的序列<x1,x2,x3……

脆弱的SSL加密算法漏洞原理以及修复方法

漏洞名称&#xff1a;弱加密算法、脆弱的加密算法、脆弱的SSL加密算法、openssl的FREAK Attack漏洞 漏洞描述&#xff1a;脆弱的SSL加密算法&#xff0c;是一种常见的漏洞&#xff0c;且至今仍有大量软件支持低强度的加密协议&#xff0c;包括部分版本的openssl。其实&#xf…

信息安全评估

评估基础 安全评估是什么? 是针对潜在影响正常执行其职能的行为产色产生干扰或破坏的因素进行识别、评价的过程 广义上是综合的包括测试、检测、测评、审核、评估检查等进行综合评价和预测&#xff1b;狭义的就是某个信息安全风险风评 为什么要做安全评估&#xff1f; 是…

k8s 陈述式资源管理

k8s 陈述式资源管理 命令行&#xff1a;kubectl命令行工具 优点&#xff1a;90%以上的场景都可以满足 对资源的增&#xff0c;删&#xff0c;查比较方便&#xff0c;对改不是很友好 缺点&#xff1a; 命令比较冗长&#xff0c;复杂难记 声明式&#xff1a; k8s当中的yaml…

25计算机专业考研经验贴之准备篇

Hello各位小伙伴&#xff0c;大家新年好&#xff01; 马上就要进入寒假假期了&#xff0c;25考研也该提上日程了。今天先跟大家分享一下大家在假期可以先做起来的准备工作。 【选择学校】 择校是个非常重要的内容&#xff0c;因为不同学校的考试内容是不一样的&#xff0c;有些…

Docker 实践之旅:项目迁移与高效部署

目录 1 引言2 初识 Docker2.1 Docker简介2.2 Docker优势 3 传统部署流程的问题4 学习 Docker 的过程5 Docker 解决项目部署的实践5.1 迁移关键服务5.2 定制化打包与快速部署 6 项目实践收获6.1 简化了部署流程6.2 节约了部署成本 7 克服难点和经验分享7.1 版本兼容性问题7.2 网…

【华为机试】2023年真题B卷(python)-绘图机器-计算面积

一、题目 题目描述&#xff1a; 绘图机器的绘图笔初始位置在原点(0,0)机器启动后按照以下规则来进行绘制直线。 1. 尝试沿着横线坐标正向绘制直线直到给定的终点E 2. 期间可以通过指令在纵坐标轴方向进行偏移&#xff0c;offsetY为正数表示正向偏移,为负数表示负向偏移 给定的横…